Cargando…
A hierarchical machine learning framework for the analysis of large scale animal movement data
BACKGROUND: In recent years the field of movement ecology has been revolutionized by our ability to collect high-accuracy, fine scale telemetry data from individual animals and groups. This growth in our data collection capacity has led to the development of statistical techniques that integrate tel...
Autores principales: | Torney, Colin J., Morales, Juan M., Husmeier, Dirk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893961/ https://www.ncbi.nlm.nih.gov/pubmed/33602302 http://dx.doi.org/10.1186/s40462-021-00242-0 |
Ejemplares similares
-
Inferring spatially varying animal movement characteristics using a hierarchical continuous‐time velocity model
por: Paun, Ionut, et al.
Publicado: (2022) -
Large scale hierarchical clustering of protein sequences
por: Krause, Antje, et al.
Publicado: (2005) -
Harvestman: a framework for hierarchical feature learning and selection from whole genome sequencing data
por: Frisby, Trevor S., et al.
Publicado: (2021) -
Multivariate hierarchical frameworks for modeling delayed reporting in count data
por: Stoner, Oliver, et al.
Publicado: (2019) -
Learning the optimal scale for GWAS through hierarchical SNP aggregation
por: Guinot, Florent, et al.
Publicado: (2018)