Cargando…
GaborNet Visual Encoding: A Lightweight Region-Based Visual Encoding Model With Good Expressiveness and Biological Interpretability
Computational visual encoding models play a key role in understanding the stimulus–response characteristics of neuronal populations in the brain visual cortex. However, building such models typically faces challenges in the effective construction of non-linear feature spaces to fit the neuronal resp...
Autores principales: | Cui, Yibo, Qiao, Kai, Zhang, Chi, Wang, Linyuan, Yan, Bin, Tong, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7893978/ https://www.ncbi.nlm.nih.gov/pubmed/33613179 http://dx.doi.org/10.3389/fnins.2021.614182 |
Ejemplares similares
-
GaborNet: investigating the importance of color space, scale and orientation for image classification
por: Rimiru, Richard M., et al.
Publicado: (2022) -
Visual Speech Recognition with Lightweight Psychologically Motivated Gabor Features
por: Zhang, Xuejie, et al.
Publicado: (2020) -
Recognition of Ellipsoid-like Herbaceous Tibetan Medicinal Materials Using DenseNet with Attention and ILBP-Encoded Gabor Features †
por: Zhou, Liyuan, et al.
Publicado: (2023) -
A Comparative Analysis of Visual Encoding Models Based on Classification and Segmentation Task-Driven CNNs
por: Yu, Ziya, et al.
Publicado: (2020) -
A Visual Encoding Model Based on Contrastive Self-Supervised Learning for Human Brain Activity along the Ventral Visual Stream
por: Li, Jingwei, et al.
Publicado: (2021)