Cargando…
Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach
AIM: (i) To quantify biofilm removal from a simulated isthmus and a lateral canal in an artificial root canal system during syringe irrigation with NaOCl at different concentrations and delivered at various flow rates (ii) to examine whether biofilm removal is further improved by a final high‐flow‐r...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894139/ https://www.ncbi.nlm.nih.gov/pubmed/32990985 http://dx.doi.org/10.1111/iej.13420 |
_version_ | 1783653184806322176 |
---|---|
author | Pereira, T. C. Boutsioukis, C. Dijkstra, R. J. B. Petridis, X. Versluis, M. de Andrade, F. B. van de Meer, W. J. Sharma, P. K. van der Sluis, L. W. M. So, M. V. R. |
author_facet | Pereira, T. C. Boutsioukis, C. Dijkstra, R. J. B. Petridis, X. Versluis, M. de Andrade, F. B. van de Meer, W. J. Sharma, P. K. van der Sluis, L. W. M. So, M. V. R. |
author_sort | Pereira, T. C. |
collection | PubMed |
description | AIM: (i) To quantify biofilm removal from a simulated isthmus and a lateral canal in an artificial root canal system during syringe irrigation with NaOCl at different concentrations and delivered at various flow rates (ii) to examine whether biofilm removal is further improved by a final high‐flow‐rate rinse with an inert irrigant following irrigation with NaOCl. (iii) to simulate the irrigant flow in these areas using a computer model (iv) to examine whether the irrigant velocity calculated by the computer model is correlated to biofilm removal. METHODOLOGY: Ninety‐six artificial root canals with either a simulated isthmus or lateral canal were used. A dual‐species in vitro biofilm was formed in these areas using a Constant Depth Film Fermenter. NaOCl at various concentrations (2, 5 and 10%) or adhesion buffer (control) was delivered for 30 s by a syringe and an open‐ended needle at 0.033, 0.083, or 0.166 mL s(−1) or passively deposited in the main root canal (phase 1). All specimens were subsequently rinsed for 30 s with adhesion buffer at 0.166 mL s(−1) (phase 2). The biofilm was scanned by Optical Coherence Tomography to determine the percentage of the remaining biofilm. Results were analysed by two 3‐way mixed‐design ANOVAs (α = 0.05). A Computational Fluid Dynamics model was used to simulate the irrigant flow inside the artificial root canal system. RESULTS: The flow rate during phase 1 and additional irrigation during phase 2 had a significant effect on the percentage of the remaining biofilm in the isthmus (P = 0.004 and P < 0.001). Additional irrigation during phase 2 also affected the remaining biofilm in the lateral canal significantly (P ≤ 0.007) but only when preceded by irrigation at medium or high flow rate during phase 1. The effect of NaOCl concentration was not significant (P > 0.05). Irrigant velocity in the isthmus and lateral canal increased with increasing flow rate and it was substantially correlated to biofilm removal from those areas. CONCLUSIONS: The irrigant flow rate affected biofilm removal in vitro more than NaOCl concentration. Irrigant velocity predicted by the computer model corresponded with the pattern of biofilm removal from the simulated isthmus and lateral canal. |
format | Online Article Text |
id | pubmed-7894139 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78941392021-03-02 Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach Pereira, T. C. Boutsioukis, C. Dijkstra, R. J. B. Petridis, X. Versluis, M. de Andrade, F. B. van de Meer, W. J. Sharma, P. K. van der Sluis, L. W. M. So, M. V. R. Int Endod J Basic Research ‐ Technical AIM: (i) To quantify biofilm removal from a simulated isthmus and a lateral canal in an artificial root canal system during syringe irrigation with NaOCl at different concentrations and delivered at various flow rates (ii) to examine whether biofilm removal is further improved by a final high‐flow‐rate rinse with an inert irrigant following irrigation with NaOCl. (iii) to simulate the irrigant flow in these areas using a computer model (iv) to examine whether the irrigant velocity calculated by the computer model is correlated to biofilm removal. METHODOLOGY: Ninety‐six artificial root canals with either a simulated isthmus or lateral canal were used. A dual‐species in vitro biofilm was formed in these areas using a Constant Depth Film Fermenter. NaOCl at various concentrations (2, 5 and 10%) or adhesion buffer (control) was delivered for 30 s by a syringe and an open‐ended needle at 0.033, 0.083, or 0.166 mL s(−1) or passively deposited in the main root canal (phase 1). All specimens were subsequently rinsed for 30 s with adhesion buffer at 0.166 mL s(−1) (phase 2). The biofilm was scanned by Optical Coherence Tomography to determine the percentage of the remaining biofilm. Results were analysed by two 3‐way mixed‐design ANOVAs (α = 0.05). A Computational Fluid Dynamics model was used to simulate the irrigant flow inside the artificial root canal system. RESULTS: The flow rate during phase 1 and additional irrigation during phase 2 had a significant effect on the percentage of the remaining biofilm in the isthmus (P = 0.004 and P < 0.001). Additional irrigation during phase 2 also affected the remaining biofilm in the lateral canal significantly (P ≤ 0.007) but only when preceded by irrigation at medium or high flow rate during phase 1. The effect of NaOCl concentration was not significant (P > 0.05). Irrigant velocity in the isthmus and lateral canal increased with increasing flow rate and it was substantially correlated to biofilm removal from those areas. CONCLUSIONS: The irrigant flow rate affected biofilm removal in vitro more than NaOCl concentration. Irrigant velocity predicted by the computer model corresponded with the pattern of biofilm removal from the simulated isthmus and lateral canal. John Wiley and Sons Inc. 2020-11-18 2021-03 /pmc/articles/PMC7894139/ /pubmed/32990985 http://dx.doi.org/10.1111/iej.13420 Text en © 2020 The Authors. International Endodontic Journal published by John Wiley & Sons Ltd on behalf of British Endodontic Society This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Basic Research ‐ Technical Pereira, T. C. Boutsioukis, C. Dijkstra, R. J. B. Petridis, X. Versluis, M. de Andrade, F. B. van de Meer, W. J. Sharma, P. K. van der Sluis, L. W. M. So, M. V. R. Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach |
title | Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach |
title_full | Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach |
title_fullStr | Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach |
title_full_unstemmed | Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach |
title_short | Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and Computational Fluid Dynamics approach |
title_sort | biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates: a combined experimental and computational fluid dynamics approach |
topic | Basic Research ‐ Technical |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894139/ https://www.ncbi.nlm.nih.gov/pubmed/32990985 http://dx.doi.org/10.1111/iej.13420 |
work_keys_str_mv | AT pereiratc biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT boutsioukisc biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT dijkstrarjb biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT petridisx biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT versluism biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT deandradefb biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT vandemeerwj biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT sharmapk biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT vandersluislwm biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach AT somvr biofilmremovalfromasimulatedisthmusandlateralcanalduringsyringeirrigationatvariousflowratesacombinedexperimentalandcomputationalfluiddynamicsapproach |