Cargando…

Qualitative review on N‐methyl‐D‐aspartate receptor expression in rat spinal cord during the postnatal development: Implications for central sensitization and pain

The N‐methyl‐D‐aspartate receptor (NMDAR) is an important mediator of central sensitization and nociception in the rat spinal dorsal horn. The NMDAR subunits and splice variants determine the properties of the receptor. Understanding the expression of NMDAR subunits in spinal cord during the neonata...

Descripción completa

Detalles Bibliográficos
Autores principales: de Geus, Thomas J., Patijn, Jacob, Joosten, Elbert A. J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894158/
https://www.ncbi.nlm.nih.gov/pubmed/33131183
http://dx.doi.org/10.1002/dneu.22789
Descripción
Sumario:The N‐methyl‐D‐aspartate receptor (NMDAR) is an important mediator of central sensitization and nociception in the rat spinal dorsal horn. The NMDAR subunits and splice variants determine the properties of the receptor. Understanding the expression of NMDAR subunits in spinal cord during the neonatal development is important as it may have consequences for the process of central sensitization and nociception in later life. In this review, a systematic literature search was conducted using three databases: Medline, Embase, and PubMed. A quality assessment was performed on predetermined entities of bias. Thirteen articles were identified to be relevant. The results show that NMDAR subunits and splice variants are dynamically expressed during postnatal development in the spinal dorsal horn. During the first 2 weeks, the expression of less excitable GluN2A subunit and more sensitive GluN2B subunit increases while the expression of high excitable GluN2C subunit decreases. During the 2nd week of postnatal development GluN1 subunits with exon 21 spliced in but exon 22 spliced out are predominantly expressed, increasing phosphorylation, and transport to the membrane. The data suggest that in rats, the nociceptive system is most susceptible to central sensitization processes during the first two postnatal weeks. This may have important consequences for nociception and pain responses in later life. From this, we conclude that targeted therapy directed toward specific NMDAR subunits is a promising candidate for mechanism‐based treatment of pain in neonates.