Cargando…

Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation

Operating lignocellulosic fermentation processes to produce fuels and chemicals is challenging due to the inherent complexity and variability of the fermentation media. Real‐time monitoring is necessary to compensate for these challenges, but the traditional process monitoring methods fail to delive...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabaneros Lopez, Pau, Udugama, Isuru A., Thomsen, Sune T., Roslander, Christian, Junicke, Helena, Iglesias, Miguel M., Gernaey, Krist V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894558/
https://www.ncbi.nlm.nih.gov/pubmed/33002188
http://dx.doi.org/10.1002/bit.27586
_version_ 1783653276935258112
author Cabaneros Lopez, Pau
Udugama, Isuru A.
Thomsen, Sune T.
Roslander, Christian
Junicke, Helena
Iglesias, Miguel M.
Gernaey, Krist V.
author_facet Cabaneros Lopez, Pau
Udugama, Isuru A.
Thomsen, Sune T.
Roslander, Christian
Junicke, Helena
Iglesias, Miguel M.
Gernaey, Krist V.
author_sort Cabaneros Lopez, Pau
collection PubMed
description Operating lignocellulosic fermentation processes to produce fuels and chemicals is challenging due to the inherent complexity and variability of the fermentation media. Real‐time monitoring is necessary to compensate for these challenges, but the traditional process monitoring methods fail to deliver actionable information that can be used to implement advanced control strategies. In this study, a hybrid‐modeling approach is presented to monitor cellulose‐to‐ethanol (EtOH) fermentations in real‐time. The hybrid approach uses a continuous‐discrete extended Kalman filter to reconciliate the predictions of a data‐driven model and a kinetic model and to estimate the concentration of glucose (Glu), xylose (Xyl), and EtOH. The data‐driven model is based on partial least squares (PLS) regression and predicts in real‐time the concentration of Glu, Xyl, and EtOH from spectra collected with attenuated total reflectance mid‐infrared spectroscopy. The estimations made by the hybrid approach, the data‐driven models and the internal model were compared in two validation experiments showing that the hybrid model significantly outperformed the PLS and improved the predictions of the internal model. Furthermore, the hybrid model delivered consistent estimates even when disturbances in the measurements occurred, demonstrating the robustness of the method. The consistency of the proposed hybrid model opens the doors towards the implementation of advanced feedback control schemes.
format Online
Article
Text
id pubmed-7894558
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-78945582021-03-02 Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation Cabaneros Lopez, Pau Udugama, Isuru A. Thomsen, Sune T. Roslander, Christian Junicke, Helena Iglesias, Miguel M. Gernaey, Krist V. Biotechnol Bioeng ARTICLES Operating lignocellulosic fermentation processes to produce fuels and chemicals is challenging due to the inherent complexity and variability of the fermentation media. Real‐time monitoring is necessary to compensate for these challenges, but the traditional process monitoring methods fail to deliver actionable information that can be used to implement advanced control strategies. In this study, a hybrid‐modeling approach is presented to monitor cellulose‐to‐ethanol (EtOH) fermentations in real‐time. The hybrid approach uses a continuous‐discrete extended Kalman filter to reconciliate the predictions of a data‐driven model and a kinetic model and to estimate the concentration of glucose (Glu), xylose (Xyl), and EtOH. The data‐driven model is based on partial least squares (PLS) regression and predicts in real‐time the concentration of Glu, Xyl, and EtOH from spectra collected with attenuated total reflectance mid‐infrared spectroscopy. The estimations made by the hybrid approach, the data‐driven models and the internal model were compared in two validation experiments showing that the hybrid model significantly outperformed the PLS and improved the predictions of the internal model. Furthermore, the hybrid model delivered consistent estimates even when disturbances in the measurements occurred, demonstrating the robustness of the method. The consistency of the proposed hybrid model opens the doors towards the implementation of advanced feedback control schemes. John Wiley and Sons Inc. 2020-10-15 2021-02 /pmc/articles/PMC7894558/ /pubmed/33002188 http://dx.doi.org/10.1002/bit.27586 Text en © 2020 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle ARTICLES
Cabaneros Lopez, Pau
Udugama, Isuru A.
Thomsen, Sune T.
Roslander, Christian
Junicke, Helena
Iglesias, Miguel M.
Gernaey, Krist V.
Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
title Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
title_full Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
title_fullStr Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
title_full_unstemmed Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
title_short Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
title_sort transforming data to information: a parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
topic ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894558/
https://www.ncbi.nlm.nih.gov/pubmed/33002188
http://dx.doi.org/10.1002/bit.27586
work_keys_str_mv AT cabaneroslopezpau transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation
AT udugamaisurua transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation
AT thomsensunet transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation
AT roslanderchristian transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation
AT junickehelena transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation
AT iglesiasmiguelm transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation
AT gernaeykristv transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation