Cargando…
Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation
Operating lignocellulosic fermentation processes to produce fuels and chemicals is challenging due to the inherent complexity and variability of the fermentation media. Real‐time monitoring is necessary to compensate for these challenges, but the traditional process monitoring methods fail to delive...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894558/ https://www.ncbi.nlm.nih.gov/pubmed/33002188 http://dx.doi.org/10.1002/bit.27586 |
_version_ | 1783653276935258112 |
---|---|
author | Cabaneros Lopez, Pau Udugama, Isuru A. Thomsen, Sune T. Roslander, Christian Junicke, Helena Iglesias, Miguel M. Gernaey, Krist V. |
author_facet | Cabaneros Lopez, Pau Udugama, Isuru A. Thomsen, Sune T. Roslander, Christian Junicke, Helena Iglesias, Miguel M. Gernaey, Krist V. |
author_sort | Cabaneros Lopez, Pau |
collection | PubMed |
description | Operating lignocellulosic fermentation processes to produce fuels and chemicals is challenging due to the inherent complexity and variability of the fermentation media. Real‐time monitoring is necessary to compensate for these challenges, but the traditional process monitoring methods fail to deliver actionable information that can be used to implement advanced control strategies. In this study, a hybrid‐modeling approach is presented to monitor cellulose‐to‐ethanol (EtOH) fermentations in real‐time. The hybrid approach uses a continuous‐discrete extended Kalman filter to reconciliate the predictions of a data‐driven model and a kinetic model and to estimate the concentration of glucose (Glu), xylose (Xyl), and EtOH. The data‐driven model is based on partial least squares (PLS) regression and predicts in real‐time the concentration of Glu, Xyl, and EtOH from spectra collected with attenuated total reflectance mid‐infrared spectroscopy. The estimations made by the hybrid approach, the data‐driven models and the internal model were compared in two validation experiments showing that the hybrid model significantly outperformed the PLS and improved the predictions of the internal model. Furthermore, the hybrid model delivered consistent estimates even when disturbances in the measurements occurred, demonstrating the robustness of the method. The consistency of the proposed hybrid model opens the doors towards the implementation of advanced feedback control schemes. |
format | Online Article Text |
id | pubmed-7894558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78945582021-03-02 Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation Cabaneros Lopez, Pau Udugama, Isuru A. Thomsen, Sune T. Roslander, Christian Junicke, Helena Iglesias, Miguel M. Gernaey, Krist V. Biotechnol Bioeng ARTICLES Operating lignocellulosic fermentation processes to produce fuels and chemicals is challenging due to the inherent complexity and variability of the fermentation media. Real‐time monitoring is necessary to compensate for these challenges, but the traditional process monitoring methods fail to deliver actionable information that can be used to implement advanced control strategies. In this study, a hybrid‐modeling approach is presented to monitor cellulose‐to‐ethanol (EtOH) fermentations in real‐time. The hybrid approach uses a continuous‐discrete extended Kalman filter to reconciliate the predictions of a data‐driven model and a kinetic model and to estimate the concentration of glucose (Glu), xylose (Xyl), and EtOH. The data‐driven model is based on partial least squares (PLS) regression and predicts in real‐time the concentration of Glu, Xyl, and EtOH from spectra collected with attenuated total reflectance mid‐infrared spectroscopy. The estimations made by the hybrid approach, the data‐driven models and the internal model were compared in two validation experiments showing that the hybrid model significantly outperformed the PLS and improved the predictions of the internal model. Furthermore, the hybrid model delivered consistent estimates even when disturbances in the measurements occurred, demonstrating the robustness of the method. The consistency of the proposed hybrid model opens the doors towards the implementation of advanced feedback control schemes. John Wiley and Sons Inc. 2020-10-15 2021-02 /pmc/articles/PMC7894558/ /pubmed/33002188 http://dx.doi.org/10.1002/bit.27586 Text en © 2020 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals LLC This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | ARTICLES Cabaneros Lopez, Pau Udugama, Isuru A. Thomsen, Sune T. Roslander, Christian Junicke, Helena Iglesias, Miguel M. Gernaey, Krist V. Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation |
title | Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation |
title_full | Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation |
title_fullStr | Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation |
title_full_unstemmed | Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation |
title_short | Transforming data to information: A parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation |
title_sort | transforming data to information: a parallel hybrid model for real‐time state estimation in lignocellulosic ethanol fermentation |
topic | ARTICLES |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894558/ https://www.ncbi.nlm.nih.gov/pubmed/33002188 http://dx.doi.org/10.1002/bit.27586 |
work_keys_str_mv | AT cabaneroslopezpau transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation AT udugamaisurua transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation AT thomsensunet transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation AT roslanderchristian transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation AT junickehelena transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation AT iglesiasmiguelm transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation AT gernaeykristv transformingdatatoinformationaparallelhybridmodelforrealtimestateestimationinlignocellulosicethanolfermentation |