Cargando…

An Asymmetric Genetic Signal Associated with Mechanosensory Expansion in Cave-Adapted Fish

A key challenge in contemporary biology is connecting genotypic variation to phenotypic diversity. Quantitative genetics provides a powerful technique for identifying regions of the genome that covary with phenotypic variation. Here, we present a quantitative trait loci (QTL) analysis of a natural f...

Descripción completa

Detalles Bibliográficos
Autores principales: Powers, Amanda K., Boggs, Tyler E., Gross, Joshua B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894647/
https://www.ncbi.nlm.nih.gov/pubmed/33614165
http://dx.doi.org/10.3390/sym12121951
Descripción
Sumario:A key challenge in contemporary biology is connecting genotypic variation to phenotypic diversity. Quantitative genetics provides a powerful technique for identifying regions of the genome that covary with phenotypic variation. Here, we present a quantitative trait loci (QTL) analysis of a natural freshwater fish system, Astyanax mexicanus, that harbors two morphs corresponding to a cave and surface fish. Following their divergence ~500 Kya, cavefish have adapted to the extreme pressures of the subterranean biome. As a consequence, cavefish have lost numerous features, but evolved gains for a variety of constructive features including behavior. Prior work found that sensory tissues (neuromasts) present in the “eye orbit” region of the skull associate with sensitivity to vibrations in water. This augmented sensation is believed to facilitate foraging behavior in the complete darkness of a cave, and may impact on evolved lateral swimming preference. To this point, however, it has remained unclear how morphological variation integrates with behavioral variation through heritable factors. Using a QTL approach, we discovered the genetic architecture of neuromasts present in the eye orbit region, demonstrating that this feature is under genetic control. Interestingly, linked loci were asymmetric-signals were detected using only data collected from the right, but not left, side of the face. This finding may explain enhanced sensitivity and/or feedback of water movements mediating a lateral swimming preference. The locus we discovered based on neuromast position maps near established QTL for eye size and a facial bone morphology, raising the intriguing possibility that eye loss, sensory expansion, and the cranial skeleton may be integrated for evolving adaptive behaviors. Thus, this work will further our understanding of the functional consequence of key loci that influence the evolutionary origin of changes impacting morphology, behavior, and adaptation.