Cargando…
Performance of a deep-learning algorithm for referable thoracic abnormalities on chest radiographs: A multicenter study of a health screening cohort
PURPOSE: This study evaluated the performance of a commercially available deep-learning algorithm (DLA) (Insight CXR, Lunit, Seoul, South Korea) for referable thoracic abnormalities on chest X-ray (CXR) using a consecutively collected multicenter health screening cohort. METHODS AND MATERIALS: A con...
Autores principales: | Kim, Eun Young, Kim, Young Jae, Choi, Won-Jun, Lee, Gi Pyo, Choi, Ye Ra, Jin, Kwang Nam, Cho, Young Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894861/ https://www.ncbi.nlm.nih.gov/pubmed/33606779 http://dx.doi.org/10.1371/journal.pone.0246472 |
Ejemplares similares
-
Correction: Performance of a deep-learning algorithm for referable thoracic abnormalities on chest radiographs: A multicenter study of a health screening cohort
por: Kim, Eun Young, et al.
Publicado: (2021) -
Diagnostic effect of artificial intelligence solution for referable thoracic abnormalities on chest radiography: a multicenter respiratory outpatient diagnostic cohort study
por: Jin, Kwang Nam, et al.
Publicado: (2022) -
Artificial Intelligence-Based Identification of Normal Chest Radiographs: A Simulation Study in a Multicenter Health Screening Cohort
por: Yoo, Hyunsuk, et al.
Publicado: (2022) -
Development and Validation of a Deep Learning–Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs
por: Hwang, Eui Jin, et al.
Publicado: (2019) -
Evaluation of a deep learning-based computer-aided detection algorithm on chest radiographs: Case–control study
por: Choi, Soo Yun, et al.
Publicado: (2021)