Cargando…

An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters

INTRODUCTION: Gait deficits are debilitating in people with Parkinson’s disease (PwPD), which inevitably deteriorate over time. Gait analysis is a valuable method to assess disease-specific gait patterns and their relationship with the clinical features and progression of the disease. OBJECTIVES: Ou...

Descripción completa

Detalles Bibliográficos
Autores principales: Varrecchia, Tiwana, Castiglia, Stefano Filippo, Ranavolo, Alberto, Conte, Carmela, Tatarelli, Antonella, Coppola, Gianluca, Di Lorenzo, Cherubino, Draicchio, Francesco, Pierelli, Francesco, Serrao, Mariano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894951/
https://www.ncbi.nlm.nih.gov/pubmed/33606730
http://dx.doi.org/10.1371/journal.pone.0244396
_version_ 1783653335116546048
author Varrecchia, Tiwana
Castiglia, Stefano Filippo
Ranavolo, Alberto
Conte, Carmela
Tatarelli, Antonella
Coppola, Gianluca
Di Lorenzo, Cherubino
Draicchio, Francesco
Pierelli, Francesco
Serrao, Mariano
author_facet Varrecchia, Tiwana
Castiglia, Stefano Filippo
Ranavolo, Alberto
Conte, Carmela
Tatarelli, Antonella
Coppola, Gianluca
Di Lorenzo, Cherubino
Draicchio, Francesco
Pierelli, Francesco
Serrao, Mariano
author_sort Varrecchia, Tiwana
collection PubMed
description INTRODUCTION: Gait deficits are debilitating in people with Parkinson’s disease (PwPD), which inevitably deteriorate over time. Gait analysis is a valuable method to assess disease-specific gait patterns and their relationship with the clinical features and progression of the disease. OBJECTIVES: Our study aimed to i) develop an automated diagnostic algorithm based on machine-learning techniques (artificial neural networks [ANNs]) to classify the gait deficits of PwPD according to disease progression in the Hoehn and Yahr (H-Y) staging system, and ii) identify a minimum set of gait classifiers. METHODS: We evaluated 76 PwPD (H-Y stage 1–4) and 67 healthy controls (HCs) by computerized gait analysis. We computed the time-distance parameters and the ranges of angular motion (RoMs) of the hip, knee, ankle, trunk, and pelvis. Principal component analysis was used to define a subset of features including all gait variables. An ANN approach was used to identify gait deficits according to the H-Y stage. RESULTS: We identified a combination of a small number of features that distinguished PwPDs from HCs (one combination of two features: knee and trunk rotation RoMs) and identified the gait patterns between different H-Y stages (two combinations of four features: walking speed and hip, knee, and ankle RoMs; walking speed and hip, knee, and trunk rotation RoMs). CONCLUSION: The ANN approach enabled automated diagnosis of gait deficits in several symptomatic stages of Parkinson’s disease. These results will inspire future studies to test the utility of gait classifiers for the evaluation of treatments that could modify disease progression.
format Online
Article
Text
id pubmed-7894951
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-78949512021-03-01 An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters Varrecchia, Tiwana Castiglia, Stefano Filippo Ranavolo, Alberto Conte, Carmela Tatarelli, Antonella Coppola, Gianluca Di Lorenzo, Cherubino Draicchio, Francesco Pierelli, Francesco Serrao, Mariano PLoS One Research Article INTRODUCTION: Gait deficits are debilitating in people with Parkinson’s disease (PwPD), which inevitably deteriorate over time. Gait analysis is a valuable method to assess disease-specific gait patterns and their relationship with the clinical features and progression of the disease. OBJECTIVES: Our study aimed to i) develop an automated diagnostic algorithm based on machine-learning techniques (artificial neural networks [ANNs]) to classify the gait deficits of PwPD according to disease progression in the Hoehn and Yahr (H-Y) staging system, and ii) identify a minimum set of gait classifiers. METHODS: We evaluated 76 PwPD (H-Y stage 1–4) and 67 healthy controls (HCs) by computerized gait analysis. We computed the time-distance parameters and the ranges of angular motion (RoMs) of the hip, knee, ankle, trunk, and pelvis. Principal component analysis was used to define a subset of features including all gait variables. An ANN approach was used to identify gait deficits according to the H-Y stage. RESULTS: We identified a combination of a small number of features that distinguished PwPDs from HCs (one combination of two features: knee and trunk rotation RoMs) and identified the gait patterns between different H-Y stages (two combinations of four features: walking speed and hip, knee, and ankle RoMs; walking speed and hip, knee, and trunk rotation RoMs). CONCLUSION: The ANN approach enabled automated diagnosis of gait deficits in several symptomatic stages of Parkinson’s disease. These results will inspire future studies to test the utility of gait classifiers for the evaluation of treatments that could modify disease progression. Public Library of Science 2021-02-19 /pmc/articles/PMC7894951/ /pubmed/33606730 http://dx.doi.org/10.1371/journal.pone.0244396 Text en © 2021 Varrecchia et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Varrecchia, Tiwana
Castiglia, Stefano Filippo
Ranavolo, Alberto
Conte, Carmela
Tatarelli, Antonella
Coppola, Gianluca
Di Lorenzo, Cherubino
Draicchio, Francesco
Pierelli, Francesco
Serrao, Mariano
An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters
title An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters
title_full An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters
title_fullStr An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters
title_full_unstemmed An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters
title_short An artificial neural network approach to detect presence and severity of Parkinson’s disease via gait parameters
title_sort artificial neural network approach to detect presence and severity of parkinson’s disease via gait parameters
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7894951/
https://www.ncbi.nlm.nih.gov/pubmed/33606730
http://dx.doi.org/10.1371/journal.pone.0244396
work_keys_str_mv AT varrecchiatiwana anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT castigliastefanofilippo anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT ranavoloalberto anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT contecarmela anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT tatarelliantonella anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT coppolagianluca anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT dilorenzocherubino anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT draicchiofrancesco anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT pierellifrancesco anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT serraomariano anartificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT varrecchiatiwana artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT castigliastefanofilippo artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT ranavoloalberto artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT contecarmela artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT tatarelliantonella artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT coppolagianluca artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT dilorenzocherubino artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT draicchiofrancesco artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT pierellifrancesco artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters
AT serraomariano artificialneuralnetworkapproachtodetectpresenceandseverityofparkinsonsdiseaseviagaitparameters