Cargando…
SARS-CoV-2 genetic diversity in Venezuela: Predominance of D614G variants and analysis of one outbreak
SARS-CoV-2 is the new coronavirus responsible for COVID-19 disease. The first two cases of COVID-19 were detected in Venezuela on March 13, 2020. The aim of this study was the genetic characterization of Venezuelan SARS-CoV-2 isolates. A total of 7 full SARS-CoV-2 genome sequences were obtained by S...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895374/ https://www.ncbi.nlm.nih.gov/pubmed/33606828 http://dx.doi.org/10.1371/journal.pone.0247196 |
Sumario: | SARS-CoV-2 is the new coronavirus responsible for COVID-19 disease. The first two cases of COVID-19 were detected in Venezuela on March 13, 2020. The aim of this study was the genetic characterization of Venezuelan SARS-CoV-2 isolates. A total of 7 full SARS-CoV-2 genome sequences were obtained by Sanger sequencing, from patients of different regions of Venezuela, mainly from the beginning of the epidemic. Ten out of 11 isolates (6 complete genomes and 4 partial spike genomic regions) belonged to lineage B, bearing the D614G mutation in the Spike protein. Isolates from the first outbreak that occurred in the Margarita Island harbored an in-frame deletion in its sequence, without amino acids 83–85 of the NSP1 of the ORF1. The search for deletions in 48,635 sequences showed that the NSP1 gene exhibit the highest frequency of deletions along the whole genome. Structural analysis suggests a change in the N-terminal domain with the presence of this deletion. In contrast, isolates circulating later in this island lacked the deletion, suggesting new introductions to the island after this first outbreak. In conclusion, a high diversity of SARS-CoV-2 isolates were found circulating in Venezuela, with predominance of the D614G mutation. The first small outbreak in Margarita Island seemed to be associated with a strain carrying a small deletion in the NSP1 protein, but these isolates do not seem to be responsible for the larger outbreak which started in July. |
---|