Cargando…

Mapping parameter spaces of biological switches

Since the seminal 1961 paper of Monod and Jacob, mathematical models of biomolecular circuits have guided our understanding of cell regulation. Model-based exploration of the functional capabilities of any given circuit requires systematic mapping of multidimensional spaces of model parameters. Desp...

Descripción completa

Detalles Bibliográficos
Autores principales: Diegmiller, Rocky, Zhang, Lun, Gameiro, Marcio, Barr, Justinn, Imran Alsous, Jasmin, Schedl, Paul, Shvartsman, Stanislav Y., Mischaikow, Konstantin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895388/
https://www.ncbi.nlm.nih.gov/pubmed/33556054
http://dx.doi.org/10.1371/journal.pcbi.1008711
_version_ 1783653354419781632
author Diegmiller, Rocky
Zhang, Lun
Gameiro, Marcio
Barr, Justinn
Imran Alsous, Jasmin
Schedl, Paul
Shvartsman, Stanislav Y.
Mischaikow, Konstantin
author_facet Diegmiller, Rocky
Zhang, Lun
Gameiro, Marcio
Barr, Justinn
Imran Alsous, Jasmin
Schedl, Paul
Shvartsman, Stanislav Y.
Mischaikow, Konstantin
author_sort Diegmiller, Rocky
collection PubMed
description Since the seminal 1961 paper of Monod and Jacob, mathematical models of biomolecular circuits have guided our understanding of cell regulation. Model-based exploration of the functional capabilities of any given circuit requires systematic mapping of multidimensional spaces of model parameters. Despite significant advances in computational dynamical systems approaches, this analysis remains a nontrivial task. Here, we use a nonlinear system of ordinary differential equations to model oocyte selection in Drosophila, a robust symmetry-breaking event that relies on autoregulatory localization of oocyte-specification factors. By applying an algorithmic approach that implements symbolic computation and topological methods, we enumerate all phase portraits of stable steady states in the limit when nonlinear regulatory interactions become discrete switches. Leveraging this initial exact partitioning and further using numerical exploration, we locate parameter regions that are dense in purely asymmetric steady states when the nonlinearities are not infinitely sharp, enabling systematic identification of parameter regions that correspond to robust oocyte selection. This framework can be generalized to map the full parameter spaces in a broad class of models involving biological switches.
format Online
Article
Text
id pubmed-7895388
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-78953882021-03-01 Mapping parameter spaces of biological switches Diegmiller, Rocky Zhang, Lun Gameiro, Marcio Barr, Justinn Imran Alsous, Jasmin Schedl, Paul Shvartsman, Stanislav Y. Mischaikow, Konstantin PLoS Comput Biol Research Article Since the seminal 1961 paper of Monod and Jacob, mathematical models of biomolecular circuits have guided our understanding of cell regulation. Model-based exploration of the functional capabilities of any given circuit requires systematic mapping of multidimensional spaces of model parameters. Despite significant advances in computational dynamical systems approaches, this analysis remains a nontrivial task. Here, we use a nonlinear system of ordinary differential equations to model oocyte selection in Drosophila, a robust symmetry-breaking event that relies on autoregulatory localization of oocyte-specification factors. By applying an algorithmic approach that implements symbolic computation and topological methods, we enumerate all phase portraits of stable steady states in the limit when nonlinear regulatory interactions become discrete switches. Leveraging this initial exact partitioning and further using numerical exploration, we locate parameter regions that are dense in purely asymmetric steady states when the nonlinearities are not infinitely sharp, enabling systematic identification of parameter regions that correspond to robust oocyte selection. This framework can be generalized to map the full parameter spaces in a broad class of models involving biological switches. Public Library of Science 2021-02-08 /pmc/articles/PMC7895388/ /pubmed/33556054 http://dx.doi.org/10.1371/journal.pcbi.1008711 Text en © 2021 Diegmiller et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Diegmiller, Rocky
Zhang, Lun
Gameiro, Marcio
Barr, Justinn
Imran Alsous, Jasmin
Schedl, Paul
Shvartsman, Stanislav Y.
Mischaikow, Konstantin
Mapping parameter spaces of biological switches
title Mapping parameter spaces of biological switches
title_full Mapping parameter spaces of biological switches
title_fullStr Mapping parameter spaces of biological switches
title_full_unstemmed Mapping parameter spaces of biological switches
title_short Mapping parameter spaces of biological switches
title_sort mapping parameter spaces of biological switches
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895388/
https://www.ncbi.nlm.nih.gov/pubmed/33556054
http://dx.doi.org/10.1371/journal.pcbi.1008711
work_keys_str_mv AT diegmillerrocky mappingparameterspacesofbiologicalswitches
AT zhanglun mappingparameterspacesofbiologicalswitches
AT gameiromarcio mappingparameterspacesofbiologicalswitches
AT barrjustinn mappingparameterspacesofbiologicalswitches
AT imranalsousjasmin mappingparameterspacesofbiologicalswitches
AT schedlpaul mappingparameterspacesofbiologicalswitches
AT shvartsmanstanislavy mappingparameterspacesofbiologicalswitches
AT mischaikowkonstantin mappingparameterspacesofbiologicalswitches