Cargando…

Transfer Extreme Learning Machine with Output Weight Alignment

Extreme Learning Machine (ELM) as a fast and efficient neural network model in pattern recognition and machine learning will decline when the labeled training sample is insufficient. Transfer learning helps the target task to learn a reliable model by using plentiful labeled samples from the differe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zang, Shaofei, Cheng, Yuhu, Wang, Xuesong, Yan, Yongyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895561/
https://www.ncbi.nlm.nih.gov/pubmed/33628212
http://dx.doi.org/10.1155/2021/6627765
Descripción
Sumario:Extreme Learning Machine (ELM) as a fast and efficient neural network model in pattern recognition and machine learning will decline when the labeled training sample is insufficient. Transfer learning helps the target task to learn a reliable model by using plentiful labeled samples from the different but relevant domain. In this paper, we propose a supervised Extreme Learning Machine with knowledge transferability, called Transfer Extreme Learning Machine with Output Weight Alignment (TELM-OWA). Firstly, it reduces the distribution difference between domains by aligning the output weight matrix of the ELM trained by the labeled samples from the source and target domains. Secondly, the approximation between the interdomain ELM output weight matrix is added to the objective function to further realize the cross-domain transfer of knowledge. Thirdly, we consider the objective function as the least square problem and transform it into a standard ELM model to be efficiently solved. Finally, the effectiveness of the proposed algorithm is verified by classification experiments on 16 sets of image datasets and 6 sets of text datasets, and the result demonstrates the competitive performance of our method with respect to other ELM models and transfer learning approach.