Cargando…
Endoplasmic Reticulum Stress Is Involved in Glucocorticoid-Induced Apoptosis in PC12 Cells
OBJECTIVE: The present study selected PC12 cells to construct a neuronal injury model induced by glucocorticoids (GC) in vitro, aiming to explore whether the endoplasmic reticulum stress (ERS) PKR-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP-homologous prot...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895572/ https://www.ncbi.nlm.nih.gov/pubmed/33628710 http://dx.doi.org/10.1155/2021/5565671 |
Sumario: | OBJECTIVE: The present study selected PC12 cells to construct a neuronal injury model induced by glucocorticoids (GC) in vitro, aiming to explore whether the endoplasmic reticulum stress (ERS) PKR-like endoplasmic reticulum kinase (PERK)-activating transcription factor 4 (ATF4)-C/EBP-homologous protein (CHOP) and inositol requirement 1 (IRE1)-apoptosis signal regulating kinase 1 (ASK1)-C-Jun amino-terminal kinase (JNK) signaling pathways are associated with the neuronal injury process induced by GC and provide morphological evidence. METHODS: Cell models with different doses and different durations of GC exposure were established. The viability of PC12 cells was detected by the CCK-8 assay, and the apoptosis rate of PC12 cells was detected by the flow cytometry assay. The expression of microtubule-associated protein 2 (Map2); glucocorticoids receptor (GR); cellular oncogene fos (C-fos); and ERS-related proteins, glucose-regulated protein 78 (GRP78), p-PERK, p-IRE1, ATF4, ASK1, JNK, and CHOP, was observed by immunofluorescence staining. RESULTS: The results of immunofluorescence staining showed that PC12 cells abundantly expressed Map2 and GR. The CCK-8 assay revealed that high-concentration GC exposure significantly inhibited the cell viability of PC12 cells. The flow cytometry assay indicated that high-concentration GC exposure significantly increased the apoptosis rate of PC12 cells. Immunofluorescence staining showed that GC exposure significantly increased the expression of C-fos, GRP78, p-PERK, p-IRE1, ATF4, ASK1, JNK, and CHOP. Treatment with ERS inhibitor 4-phenylbutyric acid (4-PBA) and GR inhibitor RU38486 attenuated related damage and downregulated the expression of the abovementioned proteins. CONCLUSION: High-concentration GC exposure can significantly inhibit the viability of PC12 cells and induce apoptosis. PERK-ATF4-CHOP and IRE1-ASK1-JNK pathways are involved in the above damage process. |
---|