Cargando…
Research on Recognition of Motor Imagination Based on Connectivity Features of Brain Functional Network
Feature extraction is essential for classifying different motor imagery (MI) tasks in a brain-computer interface. To improve classification accuracy, we propose a novel feature extraction method in which the connectivity increment rate (CIR) of the brain function network (BFN) is extracted. First, t...
Autores principales: | Luo, Zhizeng, Jin, Ronghang, Shi, Hongfei, Lu, Xianju |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895585/ https://www.ncbi.nlm.nih.gov/pubmed/33628220 http://dx.doi.org/10.1155/2021/6655430 |
Ejemplares similares
-
A Feature Extraction Algorithm of Brain Network of Motor Imagination Based on a Directed Transfer Function
por: Ma, Shuang, et al.
Publicado: (2022) -
Gesture Recognition Based on Multiscale Singular Value Entropy and Deep Belief Network
por: Li, Wenguo, et al.
Publicado: (2020) -
Parallel Alterations of Functional Connectivity during Execution and Imagination after Motor Imagery Learning
por: Zhang, Hang, et al.
Publicado: (2012) -
Single-Trial Recognition of Imagined Forces and Speeds of Hand Clenching Based on Brain Topography and Brain Network
por: Xiong, Xin, et al.
Publicado: (2018) -
Activation of the brain during motor imagination task with auditory stimulation
por: Li, Long, et al.
Publicado: (2023)