Cargando…

Protection, disinfection, and immunization for healthcare during the COVID-19 pandemic: Role of natural and synthetic macromolecules

The world is trying to improve public health while the outbreak of the COVID-19 is at its worst. So far, countless people have died from the COVID-19 disease and it is still a serious threat to human health. Synthetic and natural polymers are unavoidable materials in the healthcare sector. During th...

Descripción completa

Detalles Bibliográficos
Autores principales: Mallakpour, Shadpour, Azadi, Elham, Hussain, Chaudhery Mustansar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895681/
http://dx.doi.org/10.1016/j.scitotenv.2021.145989
Descripción
Sumario:The world is trying to improve public health while the outbreak of the COVID-19 is at its worst. So far, countless people have died from the COVID-19 disease and it is still a serious threat to human health. Synthetic and natural polymers are unavoidable materials in the healthcare sector. During the COVID-19 outbreak, diverse medical equipment and devices were designed and developed by using these macromolecules for the protection, disinfection, and immunization applications. Synthetic polymers such as polypropylene, polystyrene, poly(lactic acid), poly(ethylene terephthalate), and so forth have been successfully applied for the design and fabrication of diverse face masks, shields, anti-viral coatings, as well as diagnostic kits. Natural polymers having great features such as biodegradability and environmentally friendly are made from algae, plants, and animals. These polymers including sodium alginate, chitosan, cellulose, and gums have been shown a critical role in the fabrication of personal protective equipment, immunosensors, and anti-viral spray for control and fight against COVID-19. Besides, the problem of plastic waste can be solved by replacing them with natural polymers. This mini-review aims to show the application of polymer-based materials during the COVID-19 epidemic.