Cargando…
Non-local mean denoising using multiple PET reconstructions
OBJECTIVES: Non-local mean (NLM) filtering has been broadly used for denoising of natural and medical images. The NLM filter relies on the redundant information, in the form of repeated patterns/textures, in the target image to discriminate the underlying structures/signals from noise. In PET (or SP...
Autores principales: | Arabi, Hossein, Zaidi, Habib |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895794/ https://www.ncbi.nlm.nih.gov/pubmed/33244745 http://dx.doi.org/10.1007/s12149-020-01550-y |
Ejemplares similares
-
Non-Local Means Denoising of Dynamic PET Images
por: Dutta, Joyita, et al.
Publicado: (2013) -
Non-local mean denoising in diffusion tensor space
por: SU, BAIHAI, et al.
Publicado: (2014) -
CONN-NLM: A Novel CONNectome-Based Non-local Means Filter for PET-MRI Denoising
por: Sun, Zhuopin, et al.
Publicado: (2022) -
Deep learning–based metal artefact reduction in PET/CT imaging
por: Arabi, Hossein, et al.
Publicado: (2021) -
Deep learning–based denoising of low-dose SPECT myocardial perfusion images: quantitative assessment and clinical performance
por: Aghakhan Olia, Narges, et al.
Publicado: (2021)