Cargando…
Optimal marker gene selection for cell type discrimination in single cell analyses
Single-cell technologies characterize complex cell populations across multiple data modalities at unprecedented scale and resolution. Multi-omic data for single cell gene expression, in situ hybridization, or single cell chromatin states are increasingly available across diverse tissue types. When i...
Autores principales: | Dumitrascu, Bianca, Villar, Soledad, Mixon, Dustin G., Engelhardt, Barbara E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895823/ https://www.ncbi.nlm.nih.gov/pubmed/33608535 http://dx.doi.org/10.1038/s41467-021-21453-4 |
Ejemplares similares
-
netNMF-sc: leveraging gene–gene interactions for imputation and dimensionality reduction in single-cell expression analysis
por: Elyanow, Rebecca, et al.
Publicado: (2020) -
Statistical tests for detecting variance effects in quantitative trait studies
por: Dumitrascu, Bianca, et al.
Publicado: (2019) -
Multiset multicover methods for discriminative marker selection
por: Hasanaj, Euxhen, et al.
Publicado: (2022) -
Optimally discriminative subnetwork markers predict response to chemotherapy
por: Dao, Phuong, et al.
Publicado: (2011) -
Optimizing the photon selection of the CMS Single-Photon search for Supersymmetry using multivariate analyses
por: Lange, Johannes
Publicado: (2014)