Cargando…
Estimating Fisher discriminant error in a linear integrator model of neural population activity
Decoding approaches provide a useful means of estimating the information contained in neuronal circuits. In this work, we analyze the expected classification error of a decoder based on Fisher linear discriminant analysis. We provide expressions that relate decoding error to the specific parameters...
Autores principales: | Calderini, Matias, Thivierge, Jean-Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895896/ https://www.ncbi.nlm.nih.gov/pubmed/33606089 http://dx.doi.org/10.1186/s13408-021-00104-4 |
Ejemplares similares
-
Learning Long Temporal Sequences in Spiking Networks by Multiplexing Neural Oscillations
por: Vincent-Lamarre, Philippe, et al.
Publicado: (2020) -
Unbiased bootstrap error estimation for linear discriminant analysis
por: Vu, Thang, et al.
Publicado: (2014) -
Classification of micro-calcification in mammograms using scalable linear Fisher discriminant analysis
por: Suhail, Zobia, et al.
Publicado: (2018) -
A Gene selection approach based on the fisher linear discriminant and the neighborhood rough set
por: Sun, Lin, et al.
Publicado: (2017) -
Fisher Scoring for crossed factor linear mixed models
por: Maullin-Sapey, Thomas, et al.
Publicado: (2021)