Cargando…
RBM-MHC: A Semi-Supervised Machine-Learning Method for Sample-Specific Prediction of Antigen Presentation by HLA-I Alleles
The recent increase of immunopeptidomics data, obtained by mass spectrometry or binding assays, opens up possibilities for investigating endogenous antigen presentation by the highly polymorphic human leukocyte antigen class I (HLA-I) protein. State-of-the-art methods predict with high accuracy pres...
Autores principales: | Bravi, Barbara, Tubiana, Jérôme, Cocco, Simona, Monasson, Rémi, Mora, Thierry, Walczak, Aleksandra M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895905/ https://www.ncbi.nlm.nih.gov/pubmed/33338400 http://dx.doi.org/10.1016/j.cels.2020.11.005 |
Ejemplares similares
-
A transfer-learning approach to predict antigen immunogenicity and T-cell receptor specificity
por: Bravi, Barbara, et al.
Publicado: (2023) -
Learning protein constitutive motifs from sequence data
por: Tubiana, Jérôme, et al.
Publicado: (2019) -
Probing T-cell response by sequence-based probabilistic modeling
por: Bravi, Barbara, et al.
Publicado: (2021) -
Adaptive cluster algorithm to infer Boltzmann machines from multi-electrode recording data
por: Cocco, Simona, et al.
Publicado: (2011) -
Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers
por: Molari, Marco, et al.
Publicado: (2020)