Cargando…
Enabling deeper learning on big data for materials informatics applications
The application of machine learning (ML) techniques in materials science has attracted significant attention in recent years, due to their impressive ability to efficiently extract data-driven linkages from various input materials representations to their output properties. While the application of...
Autores principales: | Jha, Dipendra, Gupta, Vishu, Ward, Logan, Yang, Zijiang, Wolverton, Christopher, Foster, Ian, Liao, Wei-keng, Choudhary, Alok, Agrawal, Ankit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7895970/ https://www.ncbi.nlm.nih.gov/pubmed/33608599 http://dx.doi.org/10.1038/s41598-021-83193-1 |
Ejemplares similares
-
Moving closer to experimental level materials property prediction using AI
por: Jha, Dipendra, et al.
Publicado: (2022) -
ElemNet: Deep Learning the Chemistry of Materials From Only Elemental Composition
por: Jha, Dipendra, et al.
Publicado: (2018) -
Improving deep learning model performance under parametric constraints for materials informatics applications
por: Gupta, Vishu, et al.
Publicado: (2023) -
Generative Adversarial Networks and Mixture Density Networks-Based Inverse Modeling for Microstructural Materials Design
por: Mao, Yuwei, et al.
Publicado: (2022) -
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Gupta, Vishu, et al.
Publicado: (2021)