Cargando…
An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviat...
Autores principales: | Chen, Chi-Long, Chen, Chi-Chung, Yu, Wei-Hsiang, Chen, Szu-Hua, Chang, Yu-Chan, Hsu, Tai-I, Hsiao, Michael, Yeh, Chao-Yuan, Chen, Cheng-Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896045/ https://www.ncbi.nlm.nih.gov/pubmed/33608558 http://dx.doi.org/10.1038/s41467-021-21467-y |
Ejemplares similares
-
Identification of nodal micrometastasis in colorectal cancer using deep learning on annotation-free whole-slide images
por: Chuang, Wen-Yu, et al.
Publicado: (2021) -
Colon Tissues Classification and Localization in Whole Slide Images Using Deep Learning
por: Gupta, Pushpanjali, et al.
Publicado: (2021) -
Mapping stain distribution in pathology slides using whole slide imaging
por: Yeh, Fang-Cheng, et al.
Publicado: (2014) -
Neuropathologist-level integrated classification of adult-type diffuse gliomas using deep learning from whole-slide pathological images
por: Wang, Weiwei, et al.
Publicado: (2023) -
Deep Learning for Classification of Colorectal Polyps on Whole-slide Images
por: Korbar, Bruno, et al.
Publicado: (2017)