Cargando…
Human cortical encoding of pitch in tonal and non-tonal languages
Languages can use a common repertoire of vocal sounds to signify distinct meanings. In tonal languages, such as Mandarin Chinese, pitch contours of syllables distinguish one word from another, whereas in non-tonal languages, such as English, pitch is used to convey intonation. The neural computation...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896081/ https://www.ncbi.nlm.nih.gov/pubmed/33608548 http://dx.doi.org/10.1038/s41467-021-21430-x |
Sumario: | Languages can use a common repertoire of vocal sounds to signify distinct meanings. In tonal languages, such as Mandarin Chinese, pitch contours of syllables distinguish one word from another, whereas in non-tonal languages, such as English, pitch is used to convey intonation. The neural computations underlying language specialization in speech perception are unknown. Here, we use a cross-linguistic approach to address this. Native Mandarin- and English- speaking participants each listened to both Mandarin and English speech, while neural activity was directly recorded from the non-primary auditory cortex. Both groups show language-general coding of speaker-invariant pitch at the single electrode level. At the electrode population level, we find language-specific distribution of cortical tuning parameters in Mandarin speakers only, with enhanced sensitivity to Mandarin tone categories. Our results show that speech perception relies upon a shared cortical auditory feature processing mechanism, which may be tuned to the statistics of a given language. |
---|