Cargando…

Constitutive activation of nitrate reductase in tobacco alters flowering time and plant biomass

Pyridine alkaloids produced in tobacco can react with nitrosating agents such as nitrite to form tobacco-specific nitrosamines (TSNA), which are among the most notable toxicants present in tobacco smoke. The market type known as burley tobacco is particularly susceptible to TSNA formation because it...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Jianli, Chandrakanth, Niharika N., Lewis, Ramsey S., Andres, Karen, Bovet, Lucien, Goepfert, Simon, Dewey, Ralph E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896089/
https://www.ncbi.nlm.nih.gov/pubmed/33608646
http://dx.doi.org/10.1038/s41598-021-83797-7
Descripción
Sumario:Pyridine alkaloids produced in tobacco can react with nitrosating agents such as nitrite to form tobacco-specific nitrosamines (TSNA), which are among the most notable toxicants present in tobacco smoke. The market type known as burley tobacco is particularly susceptible to TSNA formation because its corresponding cultivars exhibit a nitrogen-use-deficiency phenotype which results in high accumulation of nitrate, which, in turn, is converted to nitrite by leaf surface microbes. We have previously shown that expression of a constitutively activated nitrate reductase (NR) enzyme dramatically decreases leaf nitrate levels in burley tobacco, resulting in substantial TSNA reductions without altering the alkaloid profile. Here, we show that plants expressing a constitutively active NR construct, designated 35S:S523D-NR, display an early-flowering phenotype that is also associated with a substantial reduction in plant biomass. We hypothesized that crossing 35S:S523D-NR tobaccos with burley cultivars that flower later than normal would help mitigate the undesirable early-flowering/reduced-biomass traits while maintaining the desirable low-nitrate/TSNA phenotype. To test this, 35S:S523D-NR plants were crossed with two late-flowering cultivars, NC 775 and NC 645WZ. In both cases, the plant biomass at harvest was restored to levels similar to those in the original cultivar used for transformation while the low-nitrate/TSNA trait was maintained. Interestingly, the mechanism by which yield was restored differed markedly between the two crosses. Biomass restoration in F(1) hybrids using NC 645WZ as a parent was associated with delayed flowering, as originally hypothesized. Unexpectedly, however, crosses with NC 775 displayed enhanced biomass despite maintaining the early-flowering trait of the 35S:S523D-NR parent.