Cargando…
On the Robustness of Graph-Based Clustering to Random Network Alterations
Biological functions emerge from complex and dynamic networks of protein–protein interactions. Because these protein–protein interaction networks, or interactomes, represent pairwise connections within a hierarchically organized system, it is often useful to identify higher-order associations embedd...
Autores principales: | Stacey, R. Greg, Skinnider, Michael A., Foster, Leonard J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896145/ https://www.ncbi.nlm.nih.gov/pubmed/33592499 http://dx.doi.org/10.1074/mcp.RA120.002275 |
Ejemplares similares
-
Genomic data integration systematically biases interactome mapping
por: Skinnider, Michael A., et al.
Publicado: (2018) -
A rapid and accurate approach for prediction of interactomes from co-elution data (PrInCE)
por: Stacey, R. Greg, et al.
Publicado: (2017) -
Context-specific interactions in literature-curated protein interaction databases
por: Stacey, R. Greg, et al.
Publicado: (2018) -
Robust Spectral Clustering Using Statistical Sub-Graph Affinity Model
por: Eichel, Justin A., et al.
Publicado: (2013) -
Reproducibility and Robustness of Graph Measures of the Associative-Semantic Network
por: Wang, Yu, et al.
Publicado: (2014)