Cargando…
Phylogenetically-controlled correlates of primate blinking behaviour
Eye blinking is an essential maintenance behaviour for many terrestrial animals, but is also a risky behaviour as the animal is unable to scan the environment and detect hazards while its eyes are temporarily closed. It is therefore likely that the length of time that the eyes are closed and the len...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7896502/ https://www.ncbi.nlm.nih.gov/pubmed/33643718 http://dx.doi.org/10.7717/peerj.10950 |
Sumario: | Eye blinking is an essential maintenance behaviour for many terrestrial animals, but is also a risky behaviour as the animal is unable to scan the environment and detect hazards while its eyes are temporarily closed. It is therefore likely that the length of time that the eyes are closed and the length of the gap between blinks for a species may reflect aspects of the ecology of that species, such as its social or physical environment. An earlier published study conducted a comparative study linking blinking behaviour and ecology, and detailed a dataset describing the blinking behaviour of a large number of primate species that was collected from captive animals, but the analysis presented did not control for the nonindependence of the data due to common evolutionary history. In the present study, the dataset is reanalysed using phylogenetic comparative methods, after reconsideration of the parameters describing the physical and social environments of the species. I find that blink rate is best described by the locomotion mode of a species, where species moving through arboreal environments blink least, ground-living species blink most, and species that use both environments show intermediate rates. The duration of a blink was also related to locomotion mode, and positively correlated with both mean species group size and mean species body mass, although the increase in relation to group size is small. How a species moves through the environment therefore appears to be important for determining blinking behaviour, and suggests that complex arboreal environments may require less interruption to visual attention. Given that the data were collected with captive individuals, caution is recommended for interpreting the correlations found. |
---|