Cargando…
Entropy subspace separation-based clustering for noise reduction (ENCORE) of scRNA-seq data
Single-cell RNA sequencing enables us to characterize the cellular heterogeneity in single cell resolution with the help of cell type identification algorithms. However, the noise inherent in single-cell RNA-sequencing data severely disturbs the accuracy of cell clustering, marker identification and...
Autores principales: | Song, Jia, Liu, Yao, Zhang, Xuebing, Wu, Qiuyue, Gao, Juan, Wang, Wei, Li, Jin, Song, Yanling, Yang, Chaoyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897472/ https://www.ncbi.nlm.nih.gov/pubmed/33305325 http://dx.doi.org/10.1093/nar/gkaa1157 |
Ejemplares similares
-
Cell lineage inference from SNP and scRNA-Seq data
por: Ding, Jun, et al.
Publicado: (2019) -
SpaGE: Spatial Gene Enhancement using scRNA-seq
por: Abdelaal, Tamim, et al.
Publicado: (2020) -
dropClust: efficient clustering of ultra-large scRNA-seq data
por: Sinha, Debajyoti, et al.
Publicado: (2018) -
MLG: multilayer graph clustering for multi-condition scRNA-seq data
por: Lu, Shan, et al.
Publicado: (2021) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022)