Cargando…

Effects of Cryopreservation on Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Assessing Drug Safety Response Profiles

Burgeoning applications of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in disease modeling, regenerative medicine, and drug screening have broadened the usage of hiPSC-CMs and entailed their long-term storage. Cryopreservation is the most common approach to store hiPSC-CMs...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Joe Z., Belbachir, Nadjet, Zhang, Tiejun, Liu, Yu, Shrestha, Rajani, Wu, Joseph C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897580/
https://www.ncbi.nlm.nih.gov/pubmed/33338435
http://dx.doi.org/10.1016/j.stemcr.2020.11.010
Descripción
Sumario:Burgeoning applications of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in disease modeling, regenerative medicine, and drug screening have broadened the usage of hiPSC-CMs and entailed their long-term storage. Cryopreservation is the most common approach to store hiPSC-CMs. However, the effects of cryopreservation and recovery on hiPSC-CMs remain poorly understood. Here, we characterized the transcriptome, electro-mechanical function, and drug response of fresh hiPSC-CMs without cryopreservation and recovered hiPSC-CMs from cryopreservation. We found that recovered hiPSC-CMs showed upregulation of cell cycle genes, similar or reduced contractility, Ca(2+) transients, and field potential duration. When subjected to treatment of drugs that affect electrophysiological properties, recovered hiPSC-CMs showed an altered drug response and enhanced propensity for drug-induced cardiac arrhythmic events. In conclusion, fresh and recovered hiPSC-CMs do not always show comparable molecular and physiological properties. When cryopreserved hiPSC-CMs are used for assessing drug-induced cardiac liabilities, the altered drug sensitivity needs to be considered.