Cargando…

A new approach to integrable evolution equations on the circle

We propose a new approach for the solution of initial value problems for integrable evolution equations in the periodic setting based on the unified transform. Using the nonlinear Schrödinger equation as a model example, we show that the solution of the initial value problem on the circle can be exp...

Descripción completa

Detalles Bibliográficos
Autores principales: Fokas, A. S., Lenells, J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897634/
https://www.ncbi.nlm.nih.gov/pubmed/33633492
http://dx.doi.org/10.1098/rspa.2020.0605
_version_ 1783653708216664064
author Fokas, A. S.
Lenells, J.
author_facet Fokas, A. S.
Lenells, J.
author_sort Fokas, A. S.
collection PubMed
description We propose a new approach for the solution of initial value problems for integrable evolution equations in the periodic setting based on the unified transform. Using the nonlinear Schrödinger equation as a model example, we show that the solution of the initial value problem on the circle can be expressed in terms of the solution of a Riemann–Hilbert problem whose formulation involves quantities which are defined in terms of the initial data alone. Our approach provides an effective solution of the problem on the circle which is conceptually analogous to the solution of the problem on the line via the inverse scattering transform.
format Online
Article
Text
id pubmed-7897634
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher The Royal Society Publishing
record_format MEDLINE/PubMed
spelling pubmed-78976342021-02-24 A new approach to integrable evolution equations on the circle Fokas, A. S. Lenells, J. Proc Math Phys Eng Sci Research Article We propose a new approach for the solution of initial value problems for integrable evolution equations in the periodic setting based on the unified transform. Using the nonlinear Schrödinger equation as a model example, we show that the solution of the initial value problem on the circle can be expressed in terms of the solution of a Riemann–Hilbert problem whose formulation involves quantities which are defined in terms of the initial data alone. Our approach provides an effective solution of the problem on the circle which is conceptually analogous to the solution of the problem on the line via the inverse scattering transform. The Royal Society Publishing 2021-01 2021-01-06 /pmc/articles/PMC7897634/ /pubmed/33633492 http://dx.doi.org/10.1098/rspa.2020.0605 Text en © 2021 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Research Article
Fokas, A. S.
Lenells, J.
A new approach to integrable evolution equations on the circle
title A new approach to integrable evolution equations on the circle
title_full A new approach to integrable evolution equations on the circle
title_fullStr A new approach to integrable evolution equations on the circle
title_full_unstemmed A new approach to integrable evolution equations on the circle
title_short A new approach to integrable evolution equations on the circle
title_sort new approach to integrable evolution equations on the circle
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897634/
https://www.ncbi.nlm.nih.gov/pubmed/33633492
http://dx.doi.org/10.1098/rspa.2020.0605
work_keys_str_mv AT fokasas anewapproachtointegrableevolutionequationsonthecircle
AT lenellsj anewapproachtointegrableevolutionequationsonthecircle
AT fokasas newapproachtointegrableevolutionequationsonthecircle
AT lenellsj newapproachtointegrableevolutionequationsonthecircle