Cargando…
Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission
By modelling the evaporation and settling of droplets emitted during respiratory releases and using previous measurements of droplet size distributions and SARS-CoV-2 viral load, estimates of the evolution of the liquid mass and the number of viral copies suspended were performed as a function of ti...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897643/ https://www.ncbi.nlm.nih.gov/pubmed/33633490 http://dx.doi.org/10.1098/rspa.2020.0584 |
_version_ | 1783653708908724224 |
---|---|
author | de Oliveira, P. M. Mesquita, L. C. C. Gkantonas, S. Giusti, A. Mastorakos, E. |
author_facet | de Oliveira, P. M. Mesquita, L. C. C. Gkantonas, S. Giusti, A. Mastorakos, E. |
author_sort | de Oliveira, P. M. |
collection | PubMed |
description | By modelling the evaporation and settling of droplets emitted during respiratory releases and using previous measurements of droplet size distributions and SARS-CoV-2 viral load, estimates of the evolution of the liquid mass and the number of viral copies suspended were performed as a function of time from the release. The settling times of a droplet cloud and its suspended viral dose are significantly affected by the droplet composition. The aerosol (defined as droplets smaller than 5 μm) resulting from 30 s of continued speech has O(1 h) settling time and a viable viral dose an order-of-magnitude higher than in a short cough. The time-of-flight to reach 2 m is only a few seconds resulting in a viral dose above the minimum required for infection, implying that physical distancing in the absence of ventilation is not sufficient to provide safety for long exposure times. The suspended aerosol emitted by continuous speaking for 1 h in a poorly ventilated room gives 0.1–11% infection risk for initial viral loads of [Formula: see text] , respectively, decreasing to 0.03–3% for 10 air changes per hour by ventilation. The present results provide quantitative estimates useful for the development of physical distancing and ventilation controls. |
format | Online Article Text |
id | pubmed-7897643 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Royal Society Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-78976432021-02-24 Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission de Oliveira, P. M. Mesquita, L. C. C. Gkantonas, S. Giusti, A. Mastorakos, E. Proc Math Phys Eng Sci Research Article By modelling the evaporation and settling of droplets emitted during respiratory releases and using previous measurements of droplet size distributions and SARS-CoV-2 viral load, estimates of the evolution of the liquid mass and the number of viral copies suspended were performed as a function of time from the release. The settling times of a droplet cloud and its suspended viral dose are significantly affected by the droplet composition. The aerosol (defined as droplets smaller than 5 μm) resulting from 30 s of continued speech has O(1 h) settling time and a viable viral dose an order-of-magnitude higher than in a short cough. The time-of-flight to reach 2 m is only a few seconds resulting in a viral dose above the minimum required for infection, implying that physical distancing in the absence of ventilation is not sufficient to provide safety for long exposure times. The suspended aerosol emitted by continuous speaking for 1 h in a poorly ventilated room gives 0.1–11% infection risk for initial viral loads of [Formula: see text] , respectively, decreasing to 0.03–3% for 10 air changes per hour by ventilation. The present results provide quantitative estimates useful for the development of physical distancing and ventilation controls. The Royal Society Publishing 2021-01 2021-01-20 /pmc/articles/PMC7897643/ /pubmed/33633490 http://dx.doi.org/10.1098/rspa.2020.0584 Text en © 2021 The Authors. http://creativecommons.org/licenses/by/4.0/ http://creativecommons.org/licenses/by/4.0/http://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Research Article de Oliveira, P. M. Mesquita, L. C. C. Gkantonas, S. Giusti, A. Mastorakos, E. Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission |
title | Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission |
title_full | Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission |
title_fullStr | Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission |
title_full_unstemmed | Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission |
title_short | Evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission |
title_sort | evolution of spray and aerosol from respiratory releases: theoretical estimates for insight on viral transmission |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897643/ https://www.ncbi.nlm.nih.gov/pubmed/33633490 http://dx.doi.org/10.1098/rspa.2020.0584 |
work_keys_str_mv | AT deoliveirapm evolutionofsprayandaerosolfromrespiratoryreleasestheoreticalestimatesforinsightonviraltransmission AT mesquitalcc evolutionofsprayandaerosolfromrespiratoryreleasestheoreticalestimatesforinsightonviraltransmission AT gkantonass evolutionofsprayandaerosolfromrespiratoryreleasestheoreticalestimatesforinsightonviraltransmission AT giustia evolutionofsprayandaerosolfromrespiratoryreleasestheoreticalestimatesforinsightonviraltransmission AT mastorakose evolutionofsprayandaerosolfromrespiratoryreleasestheoreticalestimatesforinsightonviraltransmission |