Cargando…

Revisiting imperfect interface laws for two-dimensional elastodynamics

We study the interaction of in-plane elastic waves with imperfect interfaces composed of a periodic array of voids or cracks. An effective model is derived from high-order asymptotic analysis based on two-scale homogenization and matched asymptotic technique. In two-dimensional elasticity, we obtain...

Descripción completa

Detalles Bibliográficos
Autores principales: Pham, Kim, Maurel, Agnès, Marigo, Jean-Jacques
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897651/
https://www.ncbi.nlm.nih.gov/pubmed/33633489
http://dx.doi.org/10.1098/rspa.2020.0519
Descripción
Sumario:We study the interaction of in-plane elastic waves with imperfect interfaces composed of a periodic array of voids or cracks. An effective model is derived from high-order asymptotic analysis based on two-scale homogenization and matched asymptotic technique. In two-dimensional elasticity, we obtain jump conditions set on the in-plane displacements and normal stresses; the jumps involve in addition effective parameters provided by static, elementary problems being the equivalents of the cell problems in classical two-scale homogenization. The derivation of the model is conducted in the transient regime and its stability is guarantied by the positiveness of the effective interfacial energy. Spring models are envisioned as particular cases. It is shown that massless-spring models are recovered in the limit of small void thicknesses and collinear cracks. By contrast, the use of mass-spring model is justified at normal incidence, otherwise unjustified. We provide quantitative validations of our model and comparison with spring models by means of comparison with direct numerical calculations in the harmonic regime.