Cargando…

UMAP-assisted K-means clustering of large-scale SARS-CoV-2 mutation datasets

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a worldwide devastating effect. Understanding the evolution and transmission of SARS-CoV-2 is of paramount importance for controlling, combating and preventing COVID-19. Due to the rapid gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Hozumi, Yuta, Wang, Rui, Yin, Changchuan, Wei, Guo-Wei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Ltd. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7897976/
https://www.ncbi.nlm.nih.gov/pubmed/33647832
http://dx.doi.org/10.1016/j.compbiomed.2021.104264
Descripción
Sumario:Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has a worldwide devastating effect. Understanding the evolution and transmission of SARS-CoV-2 is of paramount importance for controlling, combating and preventing COVID-19. Due to the rapid growth in both the number of SARS-CoV-2 genome sequences and the number of unique mutations, the phylogenetic analysis of SARS-CoV-2 genome isolates faces an emergent large-data challenge. We introduce a dimension-reduced K-means clustering strategy to tackle this challenge. We examine the performance and effectiveness of three dimension-reduction algorithms: principal component analysis (PCA), t-distributed stochastic neighbor embedding (t-SNE), and uniform manifold approximation and projection (UMAP). By using four benchmark datasets, we found that UMAP is the best-suited technique due to its stable, reliable, and efficient performance, its ability to improve clustering accuracy, especially for large Jaccard distanced-based datasets, and its superior clustering visualization. The UMAP-assisted K-means clustering enables us to shed light on increasingly large datasets from SARS-CoV-2 genome isolates.