Cargando…
A clinical trials corpus annotated with UMLS entities to enhance the access to evidence-based medicine
BACKGROUND: The large volume of medical literature makes it difficult for healthcare professionals to keep abreast of the latest studies that support Evidence-Based Medicine. Natural language processing enhances the access to relevant information, and gold standard corpora are required to improve sy...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898014/ https://www.ncbi.nlm.nih.gov/pubmed/33618727 http://dx.doi.org/10.1186/s12911-021-01395-z |
Sumario: | BACKGROUND: The large volume of medical literature makes it difficult for healthcare professionals to keep abreast of the latest studies that support Evidence-Based Medicine. Natural language processing enhances the access to relevant information, and gold standard corpora are required to improve systems. To contribute with a new dataset for this domain, we collected the Clinical Trials for Evidence-Based Medicine in Spanish (CT-EBM-SP) corpus. METHODS: We annotated 1200 texts about clinical trials with entities from the Unified Medical Language System semantic groups: anatomy (ANAT), pharmacological and chemical substances (CHEM), pathologies (DISO), and lab tests, diagnostic or therapeutic procedures (PROC). We doubly annotated 10% of the corpus and measured inter-annotator agreement (IAA) using F-measure. As use case, we run medical entity recognition experiments with neural network models. RESULTS: This resource contains 500 abstracts of journal articles about clinical trials and 700 announcements of trial protocols (292 173 tokens). We annotated 46 699 entities (13.98% are nested entities). Regarding IAA agreement, we obtained an average F-measure of 85.65% (±4.79, strict match) and 93.94% (±3.31, relaxed match). In the use case experiments, we achieved recognition results ranging from 80.28% (±00.99) to 86.74% (±00.19) of average F-measure. CONCLUSIONS: Our results show that this resource is adequate for experiments with state-of-the-art approaches to biomedical named entity recognition. It is freely distributed at: http://www.lllf.uam.es/ESP/nlpmedterm_en.html. The methods are generalizable to other languages with similar available sources. |
---|