Cargando…

Challenges facing quantitative large-scale optical super-resolution, and some simple solutions

Optical super-resolution microscopy (SRM) has enabled biologists to visualize cellular structures with near-molecular resolution, giving unprecedented access to details about the amounts, sizes, and spatial distributions of macromolecules in the cell. Precisely quantifying these molecular details re...

Descripción completa

Detalles Bibliográficos
Autores principales: Dankovich, Tal M., Rizzoli, Silvio O.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898072/
https://www.ncbi.nlm.nih.gov/pubmed/33665555
http://dx.doi.org/10.1016/j.isci.2021.102134
Descripción
Sumario:Optical super-resolution microscopy (SRM) has enabled biologists to visualize cellular structures with near-molecular resolution, giving unprecedented access to details about the amounts, sizes, and spatial distributions of macromolecules in the cell. Precisely quantifying these molecular details requires large datasets of high-quality, reproducible SRM images. In this review, we discuss the unique set of challenges facing quantitative SRM, giving particular attention to the shortcomings of conventional specimen preparation techniques and the necessity for optimal labeling of molecular targets. We further discuss the obstacles to scaling SRM methods, such as lengthy image acquisition and complex SRM data analysis. For each of these challenges, we review the recent advances in the field that circumvent these pitfalls and provide practical advice to biologists for optimizing SRM experiments.