Cargando…
Deep Learning Image Analysis of Benign Breast Disease to Identify Subsequent Risk of Breast Cancer
BACKGROUND: New biomarkers of risk may improve breast cancer (BC) risk prediction. We developed a computational pathology method to segment benign breast disease (BBD) whole slide images into epithelium, fibrous stroma, and fat. We applied our method to the BBD BC nested case-control study within th...
Autores principales: | Vellal, Adithya D, Sirinukunwattan, Korsuk, Kensler, Kevin H, Baker, Gabrielle M, Stancu, Andreea L, Pyle, Michael E, Collins, Laura C, Schnitt, Stuart J, Connolly, James L, Veta, Mitko, Eliassen, A Heather, Tamimi, Rulla M, Heng, Yujing J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898083/ https://www.ncbi.nlm.nih.gov/pubmed/33644680 http://dx.doi.org/10.1093/jncics/pkaa119 |
Ejemplares similares
-
Associations of reproductive breast cancer risk factors with breast tissue composition
por: Yaghjyan, Lusine, et al.
Publicado: (2021) -
Androgen receptor expression in normal breast tissue and subsequent breast cancer risk
por: Kensler, Kevin H., et al.
Publicado: (2018) -
The impact of mammographic screening on the subsequent breast cancer risk associated with biopsy-proven benign breast disease
por: Beca, Francisco, et al.
Publicado: (2021) -
Deep learning assessment of breast terminal duct lobular unit involution: Towards automated prediction of breast cancer risk
por: Wetstein, Suzanne C., et al.
Publicado: (2020) -
Immunohistochemistry scoring of breast tumor tissue microarrays: A comparison study across three software applications
por: Baker, Gabrielle M., et al.
Publicado: (2022)