Cargando…

Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite

An improved understanding of in situ mineralization in the presence of dissolved arsenic and both ferrous and ferric iron is necessary because it is an important geochemical process in the fate and transformation of arsenic and iron in groundwater systems. This work aimed at evaluating mineral phase...

Descripción completa

Detalles Bibliográficos
Autores principales: Su, Chunming, Wilkin, Richard T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898115/
https://www.ncbi.nlm.nih.gov/pubmed/33629038
http://dx.doi.org/10.3390/soilsystems4040068
_version_ 1783653805562265600
author Su, Chunming
Wilkin, Richard T.
author_facet Su, Chunming
Wilkin, Richard T.
author_sort Su, Chunming
collection PubMed
description An improved understanding of in situ mineralization in the presence of dissolved arsenic and both ferrous and ferric iron is necessary because it is an important geochemical process in the fate and transformation of arsenic and iron in groundwater systems. This work aimed at evaluating mineral phases that could form and the related transformation of arsenic species during coprecipitation. We conducted batch tests to precipitate ferrous (133 mM) and ferric (133 mM) ions in sulfate (533 mM) solutions spiked with As (0–100 mM As(V) or As(III)) and titrated with solid NaOH (400 mM). Goethite and lepidocrocite were formed at 0.5–5 mM As(V) or As(III). Only lepidocrocite formed at 10 mM As(III). Only goethite formed in the absence of added As(V) or As(III). Iron (II, III) hydroxysulfate green rust (sulfate green rust or SGR) was formed at 50 mM As(III) at an equilibrium pH of 6.34. X-ray analysis indicated that amorphous solid products were formed at 10–100 mM As(V) or 100 mM As(III). The batch tests showed that As removal ranged from 98.65–100%. Total arsenic concentrations in the formed solid phases increased with the initial solution arsenic concentrations ranging from 1.85–20.7 g kg(−1). Substantial oxidation of initially added As(III) to As(V) occurred, whereas As(V) reduction did not occur. This study demonstrates that concentrations and species of arsenic in the parent solution influence the mineralogy of coprecipitated solid phases, which in turn affects As redox transformations.
format Online
Article
Text
id pubmed-7898115
institution National Center for Biotechnology Information
language English
publishDate 2020
record_format MEDLINE/PubMed
spelling pubmed-78981152021-11-23 Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite Su, Chunming Wilkin, Richard T. Soil Syst Article An improved understanding of in situ mineralization in the presence of dissolved arsenic and both ferrous and ferric iron is necessary because it is an important geochemical process in the fate and transformation of arsenic and iron in groundwater systems. This work aimed at evaluating mineral phases that could form and the related transformation of arsenic species during coprecipitation. We conducted batch tests to precipitate ferrous (133 mM) and ferric (133 mM) ions in sulfate (533 mM) solutions spiked with As (0–100 mM As(V) or As(III)) and titrated with solid NaOH (400 mM). Goethite and lepidocrocite were formed at 0.5–5 mM As(V) or As(III). Only lepidocrocite formed at 10 mM As(III). Only goethite formed in the absence of added As(V) or As(III). Iron (II, III) hydroxysulfate green rust (sulfate green rust or SGR) was formed at 50 mM As(III) at an equilibrium pH of 6.34. X-ray analysis indicated that amorphous solid products were formed at 10–100 mM As(V) or 100 mM As(III). The batch tests showed that As removal ranged from 98.65–100%. Total arsenic concentrations in the formed solid phases increased with the initial solution arsenic concentrations ranging from 1.85–20.7 g kg(−1). Substantial oxidation of initially added As(III) to As(V) occurred, whereas As(V) reduction did not occur. This study demonstrates that concentrations and species of arsenic in the parent solution influence the mineralogy of coprecipitated solid phases, which in turn affects As redox transformations. 2020-11-23 /pmc/articles/PMC7898115/ /pubmed/33629038 http://dx.doi.org/10.3390/soilsystems4040068 Text en This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Su, Chunming
Wilkin, Richard T.
Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite
title Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite
title_full Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite
title_fullStr Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite
title_full_unstemmed Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite
title_short Removal of Arsenate and Arsenite in Equimolar Ferrous and Ferric Sulfate Solutions through Mineral Coprecipitation: Formation of Sulfate Green Rust, Goethite, and Lepidocrocite
title_sort removal of arsenate and arsenite in equimolar ferrous and ferric sulfate solutions through mineral coprecipitation: formation of sulfate green rust, goethite, and lepidocrocite
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898115/
https://www.ncbi.nlm.nih.gov/pubmed/33629038
http://dx.doi.org/10.3390/soilsystems4040068
work_keys_str_mv AT suchunming removalofarsenateandarseniteinequimolarferrousandferricsulfatesolutionsthroughmineralcoprecipitationformationofsulfategreenrustgoethiteandlepidocrocite
AT wilkinrichardt removalofarsenateandarseniteinequimolarferrousandferricsulfatesolutionsthroughmineralcoprecipitationformationofsulfategreenrustgoethiteandlepidocrocite