Cargando…
Smectic Liquid Crystalline Polymer Membranes with Aligned Nanopores in an Anisotropic Scaffold
[Image: see text] Bottom-up methods for the fabrication of nanoporous polymer membranes have numerous advantages. However, it remains challenging to fabricate nanoporous membranes that are mechanically robust and have aligned pores, that is, with a low tortuosity. Here, a mechanically robust thin-fi...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898271/ https://www.ncbi.nlm.nih.gov/pubmed/33539067 http://dx.doi.org/10.1021/acsami.0c20898 |
_version_ | 1783653830703972352 |
---|---|
author | Houben, Simon J. A. van Merwijk, Storm A. Langers, Bruno J. H. Oosterlaken, Bernette M. Borneman, Zandrie Schenning, Albert P. H. J. |
author_facet | Houben, Simon J. A. van Merwijk, Storm A. Langers, Bruno J. H. Oosterlaken, Bernette M. Borneman, Zandrie Schenning, Albert P. H. J. |
author_sort | Houben, Simon J. A. |
collection | PubMed |
description | [Image: see text] Bottom-up methods for the fabrication of nanoporous polymer membranes have numerous advantages. However, it remains challenging to fabricate nanoporous membranes that are mechanically robust and have aligned pores, that is, with a low tortuosity. Here, a mechanically robust thin-film composite membrane was fabricated consisting of a two-dimensional (2D) porous smectic liquid crystalline polymer network inside an anisotropic, microporous polymer scaffold. The polymer scaffold allows for relatively straightforward planar alignment of the smectic liquid crystalline mixture, which consisted of a diacrylate cross-linker and a dimer forming benzoic acid-based monoacrylate. Polymerized samples displayed a smectic A (SmA) phase, which formed the eventual 2D porous channels after base treatment. The aligned 2D nanoporous membranes showed a high rejection of anionic solutes bigger than 322 g/mol. Cleaning and reusability of the system were demonstrated by intentionally fouling the porous channels with a cationic dye and subsequently cleaning the membrane with an acidic solution. After cleaning, the membrane properties were unaffected; this, combined with numerous pressurizing cycles, demonstrated reusability of the system. |
format | Online Article Text |
id | pubmed-7898271 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-78982712021-02-23 Smectic Liquid Crystalline Polymer Membranes with Aligned Nanopores in an Anisotropic Scaffold Houben, Simon J. A. van Merwijk, Storm A. Langers, Bruno J. H. Oosterlaken, Bernette M. Borneman, Zandrie Schenning, Albert P. H. J. ACS Appl Mater Interfaces [Image: see text] Bottom-up methods for the fabrication of nanoporous polymer membranes have numerous advantages. However, it remains challenging to fabricate nanoporous membranes that are mechanically robust and have aligned pores, that is, with a low tortuosity. Here, a mechanically robust thin-film composite membrane was fabricated consisting of a two-dimensional (2D) porous smectic liquid crystalline polymer network inside an anisotropic, microporous polymer scaffold. The polymer scaffold allows for relatively straightforward planar alignment of the smectic liquid crystalline mixture, which consisted of a diacrylate cross-linker and a dimer forming benzoic acid-based monoacrylate. Polymerized samples displayed a smectic A (SmA) phase, which formed the eventual 2D porous channels after base treatment. The aligned 2D nanoporous membranes showed a high rejection of anionic solutes bigger than 322 g/mol. Cleaning and reusability of the system were demonstrated by intentionally fouling the porous channels with a cationic dye and subsequently cleaning the membrane with an acidic solution. After cleaning, the membrane properties were unaffected; this, combined with numerous pressurizing cycles, demonstrated reusability of the system. American Chemical Society 2021-02-04 2021-02-17 /pmc/articles/PMC7898271/ /pubmed/33539067 http://dx.doi.org/10.1021/acsami.0c20898 Text en © 2021 The Authors. Published by American Chemical Society This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Houben, Simon J. A. van Merwijk, Storm A. Langers, Bruno J. H. Oosterlaken, Bernette M. Borneman, Zandrie Schenning, Albert P. H. J. Smectic Liquid Crystalline Polymer Membranes with Aligned Nanopores in an Anisotropic Scaffold |
title | Smectic
Liquid Crystalline Polymer Membranes with
Aligned Nanopores in an Anisotropic Scaffold |
title_full | Smectic
Liquid Crystalline Polymer Membranes with
Aligned Nanopores in an Anisotropic Scaffold |
title_fullStr | Smectic
Liquid Crystalline Polymer Membranes with
Aligned Nanopores in an Anisotropic Scaffold |
title_full_unstemmed | Smectic
Liquid Crystalline Polymer Membranes with
Aligned Nanopores in an Anisotropic Scaffold |
title_short | Smectic
Liquid Crystalline Polymer Membranes with
Aligned Nanopores in an Anisotropic Scaffold |
title_sort | smectic
liquid crystalline polymer membranes with
aligned nanopores in an anisotropic scaffold |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898271/ https://www.ncbi.nlm.nih.gov/pubmed/33539067 http://dx.doi.org/10.1021/acsami.0c20898 |
work_keys_str_mv | AT houbensimonja smecticliquidcrystallinepolymermembraneswithalignednanoporesinananisotropicscaffold AT vanmerwijkstorma smecticliquidcrystallinepolymermembraneswithalignednanoporesinananisotropicscaffold AT langersbrunojh smecticliquidcrystallinepolymermembraneswithalignednanoporesinananisotropicscaffold AT oosterlakenbernettem smecticliquidcrystallinepolymermembraneswithalignednanoporesinananisotropicscaffold AT bornemanzandrie smecticliquidcrystallinepolymermembraneswithalignednanoporesinananisotropicscaffold AT schenningalbertphj smecticliquidcrystallinepolymermembraneswithalignednanoporesinananisotropicscaffold |