Cargando…

Giant GAL gene clusters for the melibiose‐galactose pathway in Torulaspora

In many yeast species, the three genes at the centre of the galactose catabolism pathway, GAL1, GAL10 and GAL7, are neighbours in the genome and form a metabolic gene cluster. We report here that some yeast strains in the genus Torulaspora have much larger GAL clusters that include genes for melibia...

Descripción completa

Detalles Bibliográficos
Autores principales: Venkatesh, Anjan, Murray, Anthony L., Coughlan, Aisling Y., Wolfe, Kenneth H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898345/
https://www.ncbi.nlm.nih.gov/pubmed/33141945
http://dx.doi.org/10.1002/yea.3532
Descripción
Sumario:In many yeast species, the three genes at the centre of the galactose catabolism pathway, GAL1, GAL10 and GAL7, are neighbours in the genome and form a metabolic gene cluster. We report here that some yeast strains in the genus Torulaspora have much larger GAL clusters that include genes for melibiase (MEL1), galactose permease (GAL2), glucose transporter (HGT1), phosphoglucomutase (PGM1) and the transcription factor GAL4, in addition to GAL1, GAL10, and GAL7. Together, these eight genes encode almost all the steps in the pathway for catabolism of extracellular melibiose (a disaccharide of galactose and glucose). We show that a progenitor 5‐gene cluster containing GAL 7‐1‐10‐4‐2 was likely present in the common ancestor of Torulaspora and Zygotorulaspora. It added PGM1 and MEL1 in the ancestor of most Torulaspora species. It underwent further expansion in the T. pretoriensis clade, involving the fusion of three progenitor clusters in tandem and the gain of HGT1. These giant GAL clusters are highly polymorphic in structure, and subject to horizontal transfers, pseudogenization and gene losses. We identify recent horizontal transfers of complete GAL clusters from T. franciscae into one strain of T. delbrueckii, and from a relative of T. maleeae into one strain of T. globosa. The variability and dynamic evolution of GAL clusters in Torulaspora indicates that there is strong natural selection on the GAL pathway in this genus.