Cargando…
Plant apocarotenoids: from retrograde signaling to interspecific communication
Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non‐photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of e...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898548/ https://www.ncbi.nlm.nih.gov/pubmed/33258195 http://dx.doi.org/10.1111/tpj.15102 |
_version_ | 1783653883535425536 |
---|---|
author | Moreno, Juan C. Mi, Jianing Alagoz, Yagiz Al‐Babili, Salim |
author_facet | Moreno, Juan C. Mi, Jianing Alagoz, Yagiz Al‐Babili, Salim |
author_sort | Moreno, Juan C. |
collection | PubMed |
description | Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non‐photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants’ rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β‐cyclocitral, β‐cyclogeranic acid, β‐ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant–plant and plant–herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis‐carotene‐derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication. |
format | Online Article Text |
id | pubmed-7898548 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-78985482021-03-03 Plant apocarotenoids: from retrograde signaling to interspecific communication Moreno, Juan C. Mi, Jianing Alagoz, Yagiz Al‐Babili, Salim Plant J Plant Hormone Functions and Interactions in Biological Systems Carotenoids are isoprenoid compounds synthesized by all photosynthetic and some non‐photosynthetic organisms. They are essential for photosynthesis and contribute to many other aspects of a plant's life. The oxidative breakdown of carotenoids gives rise to the formation of a diverse family of essential metabolites called apocarotenoids. This metabolic process either takes place spontaneously through reactive oxygen species or is catalyzed by enzymes generally belonging to the CAROTENOID CLEAVAGE DIOXYGENASE family. Apocarotenoids include the phytohormones abscisic acid and strigolactones (SLs), signaling molecules and growth regulators. Abscisic acid and SLs are vital in regulating plant growth, development and stress response. SLs are also an essential component in plants’ rhizospheric communication with symbionts and parasites. Other apocarotenoid small molecules, such as blumenols, mycorradicins, zaxinone, anchorene, β‐cyclocitral, β‐cyclogeranic acid, β‐ionone and loliolide, are involved in plant growth and development, and/or contribute to different processes, including arbuscular mycorrhiza symbiosis, abiotic stress response, plant–plant and plant–herbivore interactions and plastid retrograde signaling. There are also indications for the presence of structurally unidentified linear cis‐carotene‐derived apocarotenoids, which are presumed to modulate plastid biogenesis and leaf morphology, among other developmental processes. Here, we provide an overview on the biology of old, recently discovered and supposed plant apocarotenoid signaling molecules, describing their biosynthesis, developmental and physiological functions, and role as a messenger in plant communication. John Wiley and Sons Inc. 2021-01-08 2021-01 /pmc/articles/PMC7898548/ /pubmed/33258195 http://dx.doi.org/10.1111/tpj.15102 Text en © 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Plant Hormone Functions and Interactions in Biological Systems Moreno, Juan C. Mi, Jianing Alagoz, Yagiz Al‐Babili, Salim Plant apocarotenoids: from retrograde signaling to interspecific communication |
title | Plant apocarotenoids: from retrograde signaling to interspecific communication |
title_full | Plant apocarotenoids: from retrograde signaling to interspecific communication |
title_fullStr | Plant apocarotenoids: from retrograde signaling to interspecific communication |
title_full_unstemmed | Plant apocarotenoids: from retrograde signaling to interspecific communication |
title_short | Plant apocarotenoids: from retrograde signaling to interspecific communication |
title_sort | plant apocarotenoids: from retrograde signaling to interspecific communication |
topic | Plant Hormone Functions and Interactions in Biological Systems |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898548/ https://www.ncbi.nlm.nih.gov/pubmed/33258195 http://dx.doi.org/10.1111/tpj.15102 |
work_keys_str_mv | AT morenojuanc plantapocarotenoidsfromretrogradesignalingtointerspecificcommunication AT mijianing plantapocarotenoidsfromretrogradesignalingtointerspecificcommunication AT alagozyagiz plantapocarotenoidsfromretrogradesignalingtointerspecificcommunication AT albabilisalim plantapocarotenoidsfromretrogradesignalingtointerspecificcommunication |