Cargando…

Hybridorubrins A–D: Azaphilone Heterodimers from Stromata of Hypoxylon fragiforme and Insights into the Biosynthetic Machinery for Azaphilone Diversification

The diversity of azaphilones in stromatal extracts of the fungus Hypoxylon fragiforme was investigated and linked to their biosynthetic machineries by using bioinformatics. Nineteen azaphilone‐type compounds were isolated and characterized by NMR spectroscopy and mass spectrometry, and their absolut...

Descripción completa

Detalles Bibliográficos
Autores principales: Becker, Kevin, Pfütze, Sebastian, Kuhnert, Eric, Cox, Russell J., Stadler, Marc, Surup, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898651/
https://www.ncbi.nlm.nih.gov/pubmed/32748960
http://dx.doi.org/10.1002/chem.202003215
Descripción
Sumario:The diversity of azaphilones in stromatal extracts of the fungus Hypoxylon fragiforme was investigated and linked to their biosynthetic machineries by using bioinformatics. Nineteen azaphilone‐type compounds were isolated and characterized by NMR spectroscopy and mass spectrometry, and their absolute stereoconfigurations were assigned by using Mosher ester analysis and electronic circular dichroism spectroscopy. Four unprecedented bis‐azaphilones, named hybridorubrins A–D, were elucidated, in addition to new fragirubrins F and G and various known mitorubrin derivatives. Only the hybridorubrins, which are composed of mitorubrin and fragirubrin moieties, exhibited strong inhibition of Staphylococcus aureus biofilm formation. Analysis of the genome of H. fragiforme revealed the presence of two separate biosynthetic gene clusters (BGCs) hfaza1 and hfaza2 responsible for azaphilone formation. While the hfaza1 BGC likely encodes the assembly of the backbone and addition of fatty acid moieties to yield the (R)‐configured series of fragirubrins, the hfaza2 BGC contains the necessary genes to synthesise the widely distributed (S)‐mitorubrins. This study is the first example of two distant cross‐acting fungal BGCs collaborating to produce two families of azaphilones and bis‐azaphilones derived therefrom.