Cargando…
Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation
Surface electromyography- (sEMG-) based hand grasp force estimation plays an important role with a promising accuracy in a laboratory environment, yet hardly clinically applicable because of physiological changes and other factors. One of the critical factors is the muscle fatigue concomitant with d...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899761/ https://www.ncbi.nlm.nih.gov/pubmed/33628332 http://dx.doi.org/10.1155/2021/8817480 |
_version_ | 1783654074406666240 |
---|---|
author | Wang, Jinfeng Pang, Muye Yu, Peixuan Tang, Biwei Xiang, Kui Ju, Zhaojie |
author_facet | Wang, Jinfeng Pang, Muye Yu, Peixuan Tang, Biwei Xiang, Kui Ju, Zhaojie |
author_sort | Wang, Jinfeng |
collection | PubMed |
description | Surface electromyography- (sEMG-) based hand grasp force estimation plays an important role with a promising accuracy in a laboratory environment, yet hardly clinically applicable because of physiological changes and other factors. One of the critical factors is the muscle fatigue concomitant with daily activities which degrades the accuracy and reliability of force estimation from sEMG signals. Conventional qualitative measurements of muscle fatigue contribute to an improved force estimation model with limited progress. This paper proposes an easy-to-implement method to evaluate the muscle fatigue quantitatively and demonstrates that the proposed metrics can have a substantial impact on improving the performance of hand grasp force estimation. Specifically, the reduction in the maximal capacity to generate force is used as the metric of muscle fatigue in combination with a back-propagation neural network (BPNN) is adopted to build a sEMG-hand grasp force estimation model. Experiments are conducted in the three cases: (1) pooling training data from all muscle fatigue states with time-domain feature only, (2) employing frequency domain feature for expression of muscle fatigue information based on case 1, and 3) incorporating the quantitative metric of muscle fatigue value as an additional input for estimation model based on case 1. The results show that the degree of muscle fatigue and task intensity can be easily distinguished, and the additional input of muscle fatigue in BPNN greatly improves the performance of hand grasp force estimation, which is reflected by the 6.3797% increase in R(2) (coefficient of determination) value. |
format | Online Article Text |
id | pubmed-7899761 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-78997612021-02-23 Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation Wang, Jinfeng Pang, Muye Yu, Peixuan Tang, Biwei Xiang, Kui Ju, Zhaojie Appl Bionics Biomech Research Article Surface electromyography- (sEMG-) based hand grasp force estimation plays an important role with a promising accuracy in a laboratory environment, yet hardly clinically applicable because of physiological changes and other factors. One of the critical factors is the muscle fatigue concomitant with daily activities which degrades the accuracy and reliability of force estimation from sEMG signals. Conventional qualitative measurements of muscle fatigue contribute to an improved force estimation model with limited progress. This paper proposes an easy-to-implement method to evaluate the muscle fatigue quantitatively and demonstrates that the proposed metrics can have a substantial impact on improving the performance of hand grasp force estimation. Specifically, the reduction in the maximal capacity to generate force is used as the metric of muscle fatigue in combination with a back-propagation neural network (BPNN) is adopted to build a sEMG-hand grasp force estimation model. Experiments are conducted in the three cases: (1) pooling training data from all muscle fatigue states with time-domain feature only, (2) employing frequency domain feature for expression of muscle fatigue information based on case 1, and 3) incorporating the quantitative metric of muscle fatigue value as an additional input for estimation model based on case 1. The results show that the degree of muscle fatigue and task intensity can be easily distinguished, and the additional input of muscle fatigue in BPNN greatly improves the performance of hand grasp force estimation, which is reflected by the 6.3797% increase in R(2) (coefficient of determination) value. Hindawi 2021-02-15 /pmc/articles/PMC7899761/ /pubmed/33628332 http://dx.doi.org/10.1155/2021/8817480 Text en Copyright © 2021 Jinfeng Wang et al. https://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Wang, Jinfeng Pang, Muye Yu, Peixuan Tang, Biwei Xiang, Kui Ju, Zhaojie Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation |
title | Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation |
title_full | Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation |
title_fullStr | Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation |
title_full_unstemmed | Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation |
title_short | Effect of Muscle Fatigue on Surface Electromyography-Based Hand Grasp Force Estimation |
title_sort | effect of muscle fatigue on surface electromyography-based hand grasp force estimation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899761/ https://www.ncbi.nlm.nih.gov/pubmed/33628332 http://dx.doi.org/10.1155/2021/8817480 |
work_keys_str_mv | AT wangjinfeng effectofmusclefatigueonsurfaceelectromyographybasedhandgraspforceestimation AT pangmuye effectofmusclefatigueonsurfaceelectromyographybasedhandgraspforceestimation AT yupeixuan effectofmusclefatigueonsurfaceelectromyographybasedhandgraspforceestimation AT tangbiwei effectofmusclefatigueonsurfaceelectromyographybasedhandgraspforceestimation AT xiangkui effectofmusclefatigueonsurfaceelectromyographybasedhandgraspforceestimation AT juzhaojie effectofmusclefatigueonsurfaceelectromyographybasedhandgraspforceestimation |