Cargando…
Does non-COVID-19 lung lesion help? investigating transferability in COVID-19 CT image segmentation
Background and Objective: Coronavirus disease 2019 (COVID-19) is a highly contagious virus spreading all around the world. Deep learning has been adopted as an effective technique to aid COVID-19 detection and segmentation from computed tomography (CT) images. The major challenge lies in the inadequ...
Autores principales: | Wang, Yixin, Zhang, Yao, Liu, Yang, Tian, Jiang, Zhong, Cheng, Shi, Zhongchao, Zhang, Yang, He, Zhiqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7899930/ https://www.ncbi.nlm.nih.gov/pubmed/33662804 http://dx.doi.org/10.1016/j.cmpb.2021.106004 |
Ejemplares similares
-
FAM: focal attention module for lesion segmentation of COVID-19 CT images
por: Wu, Xiaoxin, et al.
Publicado: (2022) -
Segmentation of lung lobes and lesions in chest CT for the classification of COVID-19 severity
por: Khomduean, Prachaya, et al.
Publicado: (2023) -
Does CT help in reducing RT-PCR false negative rate for COVID-19?
por: Kohli, Anirudh, et al.
Publicado: (2021) -
COVID-rate: an automated framework for segmentation of COVID-19 lesions from chest CT images
por: Enshaei, Nastaran, et al.
Publicado: (2022) -
Two-stage hybrid network for segmentation of COVID-19 pneumonia lesions in CT images: a multicenter study
por: Shang, Yaxin, et al.
Publicado: (2022)