Cargando…
Handling missing MRI sequences in deep learning segmentation of brain metastases: a multicenter study
The purpose of this study was to assess the clinical value of a deep learning (DL) model for automatic detection and segmentation of brain metastases, in which a neural network is trained on four distinct MRI sequences using an input-level dropout layer, thus simulating the scenario of missing MRI s...
Autores principales: | Grøvik, Endre, Yi, Darvin, Iv, Michael, Tong, Elizabeth, Nilsen, Line Brennhaug, Latysheva, Anna, Saxhaug, Cathrine, Jacobsen, Kari Dolven, Helland, Åslaug, Emblem, Kyrre Eeg, Rubin, Daniel L., Zaharchuk, Greg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900111/ https://www.ncbi.nlm.nih.gov/pubmed/33619361 http://dx.doi.org/10.1038/s41746-021-00398-4 |
Ejemplares similares
-
2.5D and 3D segmentation of brain metastases with deep learning on multinational MRI data
por: Ottesen, Jon André, et al.
Publicado: (2023) -
Responses in the diffusivity and vascular function of the irradiated normal brain are seen up until 18 months following SRS of brain metastases
por: Nilsen, Line Brennhaug, et al.
Publicado: (2020) -
Brain metastases with poor vascular function are susceptible to pseudoprogression after stereotactic radiation surgery
por: Digernes, Ingrid, et al.
Publicado: (2018) -
Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes
por: Eide, Per Kristian, et al.
Publicado: (2018) -
Optimization of Q.Clear reconstruction for dynamic (18)F PET imaging
por: Lysvik, Elisabeth Kirkeby, et al.
Publicado: (2023)