Cargando…

Global 1-km present and future hourly anthropogenic heat flux

Numerical weather prediction models are progressively used to downscale future climate in cities at increasing spatial resolutions. Boundary conditions representing rapidly growing urban areas are imperative to more plausible future predictions. In this work, 1-km global anthropogenic heat emission...

Descripción completa

Detalles Bibliográficos
Autores principales: Varquez, Alvin Christopher Galang, Kiyomoto, Shota, Khanh, Do Ngoc, Kanda, Manabu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900113/
https://www.ncbi.nlm.nih.gov/pubmed/33619279
http://dx.doi.org/10.1038/s41597-021-00850-w
Descripción
Sumario:Numerical weather prediction models are progressively used to downscale future climate in cities at increasing spatial resolutions. Boundary conditions representing rapidly growing urban areas are imperative to more plausible future predictions. In this work, 1-km global anthropogenic heat emission (AHE) datasets of the present and future are constructed. To improve present AHE maps, 30 arc-second VIIRS satellite imagery outputs such as nighttime lights and night-fires were incorporated along with the LandScan(TM) population dataset. A futuristic scenario of AHE was also developed while considering pathways of radiative forcing (i.e. representative concentration pathways), pathways of social conditions (i.e. shared socio-economic pathways), a 1-km future urbanization probability map, and a model to estimate changes in population distribution. The new dataset highlights two distinct features; (1) a more spatially-heterogeneous representation of AHE is captured compared with other recent datasets, and (2) consideration of future urban sprawls and climate change in futuristic AHE maps. Significant increases in projected AHE for multiple cities under a worst-case scenario strengthen the need for further assessment of futuristic AHE.