Cargando…

In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19

Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A...

Descripción completa

Detalles Bibliográficos
Autores principales: Phan, Isabelle Q., Subramanian, Sandhya, Kim, David, Murphy, Michael, Pettie, Deleah, Carter, Lauren, Anishchenko, Ivan, Barrett, Lynn K., Craig, Justin, Tillery, Logan, Shek, Roger, Harrington, Whitney E., Koelle, David M., Wald, Anna, Veesler, David, King, Neil, Boonyaratanakornkit, Jim, Isoherranen, Nina, Greninger, Alexander L., Jerome, Keith R., Chu, Helen, Staker, Bart, Stewart, Lance, Myler, Peter J., Van Voorhis, Wesley C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900118/
https://www.ncbi.nlm.nih.gov/pubmed/33619344
http://dx.doi.org/10.1038/s41598-021-83730-y
_version_ 1783654154689839104
author Phan, Isabelle Q.
Subramanian, Sandhya
Kim, David
Murphy, Michael
Pettie, Deleah
Carter, Lauren
Anishchenko, Ivan
Barrett, Lynn K.
Craig, Justin
Tillery, Logan
Shek, Roger
Harrington, Whitney E.
Koelle, David M.
Wald, Anna
Veesler, David
King, Neil
Boonyaratanakornkit, Jim
Isoherranen, Nina
Greninger, Alexander L.
Jerome, Keith R.
Chu, Helen
Staker, Bart
Stewart, Lance
Myler, Peter J.
Van Voorhis, Wesley C.
author_facet Phan, Isabelle Q.
Subramanian, Sandhya
Kim, David
Murphy, Michael
Pettie, Deleah
Carter, Lauren
Anishchenko, Ivan
Barrett, Lynn K.
Craig, Justin
Tillery, Logan
Shek, Roger
Harrington, Whitney E.
Koelle, David M.
Wald, Anna
Veesler, David
King, Neil
Boonyaratanakornkit, Jim
Isoherranen, Nina
Greninger, Alexander L.
Jerome, Keith R.
Chu, Helen
Staker, Bart
Stewart, Lance
Myler, Peter J.
Van Voorhis, Wesley C.
author_sort Phan, Isabelle Q.
collection PubMed
description Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples).
format Online
Article
Text
id pubmed-7900118
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-79001182021-02-24 In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19 Phan, Isabelle Q. Subramanian, Sandhya Kim, David Murphy, Michael Pettie, Deleah Carter, Lauren Anishchenko, Ivan Barrett, Lynn K. Craig, Justin Tillery, Logan Shek, Roger Harrington, Whitney E. Koelle, David M. Wald, Anna Veesler, David King, Neil Boonyaratanakornkit, Jim Isoherranen, Nina Greninger, Alexander L. Jerome, Keith R. Chu, Helen Staker, Bart Stewart, Lance Myler, Peter J. Van Voorhis, Wesley C. Sci Rep Article Rapid generation of diagnostics is paramount to understand epidemiology and to control the spread of emerging infectious diseases such as COVID-19. Computational methods to predict serodiagnostic epitopes that are specific for the pathogen could help accelerate the development of new diagnostics. A systematic survey of 27 SARS-CoV-2 proteins was conducted to assess whether existing B-cell epitope prediction methods, combined with comprehensive mining of sequence databases and structural data, could predict whether a particular protein would be suitable for serodiagnosis. Nine of the predictions were validated with recombinant SARS-CoV-2 proteins in the ELISA format using plasma and sera from patients with SARS-CoV-2 infection, and a further 11 predictions were compared to the recent literature. Results appeared to be in agreement with 12 of the predictions, in disagreement with 3, while a further 5 were deemed inconclusive. We showed that two of our top five candidates, the N-terminal fragment of the nucleoprotein and the receptor-binding domain of the spike protein, have the highest sensitivity and specificity and signal-to-noise ratio for detecting COVID-19 sera/plasma by ELISA. Mixing the two antigens together for coating ELISA plates led to a sensitivity of 94% (N = 80 samples from persons with RT-PCR confirmed SARS-CoV-2 infection), and a specificity of 97.2% (N = 106 control samples). Nature Publishing Group UK 2021-02-22 /pmc/articles/PMC7900118/ /pubmed/33619344 http://dx.doi.org/10.1038/s41598-021-83730-y Text en © The Author(s) 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Phan, Isabelle Q.
Subramanian, Sandhya
Kim, David
Murphy, Michael
Pettie, Deleah
Carter, Lauren
Anishchenko, Ivan
Barrett, Lynn K.
Craig, Justin
Tillery, Logan
Shek, Roger
Harrington, Whitney E.
Koelle, David M.
Wald, Anna
Veesler, David
King, Neil
Boonyaratanakornkit, Jim
Isoherranen, Nina
Greninger, Alexander L.
Jerome, Keith R.
Chu, Helen
Staker, Bart
Stewart, Lance
Myler, Peter J.
Van Voorhis, Wesley C.
In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_full In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_fullStr In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_full_unstemmed In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_short In silico detection of SARS-CoV-2 specific B-cell epitopes and validation in ELISA for serological diagnosis of COVID-19
title_sort in silico detection of sars-cov-2 specific b-cell epitopes and validation in elisa for serological diagnosis of covid-19
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900118/
https://www.ncbi.nlm.nih.gov/pubmed/33619344
http://dx.doi.org/10.1038/s41598-021-83730-y
work_keys_str_mv AT phanisabelleq insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT subramaniansandhya insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT kimdavid insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT murphymichael insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT pettiedeleah insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT carterlauren insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT anishchenkoivan insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT barrettlynnk insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT craigjustin insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT tillerylogan insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT shekroger insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT harringtonwhitneye insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT koelledavidm insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT waldanna insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT veeslerdavid insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT kingneil insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT boonyaratanakornkitjim insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT isoherranennina insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT greningeralexanderl insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT jeromekeithr insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT chuhelen insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT stakerbart insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT stewartlance insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT mylerpeterj insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19
AT vanvoorhiswesleyc insilicodetectionofsarscov2specificbcellepitopesandvalidationinelisaforserologicaldiagnosisofcovid19