Cargando…
Graphene oxide assisted light-up aptamer selection against Thioflavin T for label-free detection of microRNA
We selected an aptamer against a fluorogenic dye called Thioflavin T (ThT). Aptamers are single-stranded DNA that can bind a specific target. We selected the ThT aptamer using graphene oxide assisted SELEX and a low-cost Open qPCR instrument. We optimized, minimized, and characterized the best aptam...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900183/ https://www.ncbi.nlm.nih.gov/pubmed/33619372 http://dx.doi.org/10.1038/s41598-021-83640-z |
Sumario: | We selected an aptamer against a fluorogenic dye called Thioflavin T (ThT). Aptamers are single-stranded DNA that can bind a specific target. We selected the ThT aptamer using graphene oxide assisted SELEX and a low-cost Open qPCR instrument. We optimized, minimized, and characterized the best aptamer candidate against ThT. The aptamer, ThT dye, and the enzymatic strand displacement amplification (SDA) were used in a label-free approach to detect the micro RNA miR-215 in saliva and serum. The aptamer confers higher specificity than intercalating dyes but without expensive covalently modified DNA probes. This isothermal, low-cost, simple method can detect both DNA and RNA. The target, miR-215, was detected with a limit of detection of 2.6 nM. |
---|