Cargando…
Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts
Single-frame depth prediction is an efficient 3D reconstruction method for one-side artifacts. However, for this purpose, ground truth images, where the pixels are associated with the actual depth, are needed. The small number of publicly accessible datasets is an issue with the restoration of cultu...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900221/ https://www.ncbi.nlm.nih.gov/pubmed/33665250 http://dx.doi.org/10.1016/j.dib.2021.106853 |
_version_ | 1783654179285237760 |
---|---|
author | Frisky, Aufaclav Zatu Kusuma Harjoko, Agus Awaludin, Lukman Dharmawan, Andi Augoestien, Nia Gella Candradewi, Ika Hujja, Roghib Muhammad Putranto, Andi Hartono, Tri Suhartono, Yudi Zambanini, Sebastian Sablatnig, Robert |
author_facet | Frisky, Aufaclav Zatu Kusuma Harjoko, Agus Awaludin, Lukman Dharmawan, Andi Augoestien, Nia Gella Candradewi, Ika Hujja, Roghib Muhammad Putranto, Andi Hartono, Tri Suhartono, Yudi Zambanini, Sebastian Sablatnig, Robert |
author_sort | Frisky, Aufaclav Zatu Kusuma |
collection | PubMed |
description | Single-frame depth prediction is an efficient 3D reconstruction method for one-side artifacts. However, for this purpose, ground truth images, where the pixels are associated with the actual depth, are needed. The small number of publicly accessible datasets is an issue with the restoration of cultural heritage objects. In addition, relief data with irregular characteristics due to nature and human treatment, such as decolorization caused by moss and chemical reaction is still not available. We therefore created a dataset of Borobudur temple reliefs registered with their depth for data availability to solve these problems. This data collection consists of 4608 × 3456 (4K) resolution and profound RGB frames and we call this dataset the Registered Relief Depth (RRD) Borobudur Dataset. The RGB images have been taken using an Olympus EM10 II Camera with a 14 mm f/3.5 lens and the depth images were obtained directly using an ASUS XTION scanner, acquired on the temple's reliefs at 15000–25000 lux day time. The registration process of RGB data and depth information was manually performed via control points and was directly supervised by the archaeologist. Apart of enriching the data availability, this dataset can become an opportunity for International researchers to understand more about Indonesian Cultural Heritages. |
format | Online Article Text |
id | pubmed-7900221 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-79002212021-03-03 Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts Frisky, Aufaclav Zatu Kusuma Harjoko, Agus Awaludin, Lukman Dharmawan, Andi Augoestien, Nia Gella Candradewi, Ika Hujja, Roghib Muhammad Putranto, Andi Hartono, Tri Suhartono, Yudi Zambanini, Sebastian Sablatnig, Robert Data Brief Data Article Single-frame depth prediction is an efficient 3D reconstruction method for one-side artifacts. However, for this purpose, ground truth images, where the pixels are associated with the actual depth, are needed. The small number of publicly accessible datasets is an issue with the restoration of cultural heritage objects. In addition, relief data with irregular characteristics due to nature and human treatment, such as decolorization caused by moss and chemical reaction is still not available. We therefore created a dataset of Borobudur temple reliefs registered with their depth for data availability to solve these problems. This data collection consists of 4608 × 3456 (4K) resolution and profound RGB frames and we call this dataset the Registered Relief Depth (RRD) Borobudur Dataset. The RGB images have been taken using an Olympus EM10 II Camera with a 14 mm f/3.5 lens and the depth images were obtained directly using an ASUS XTION scanner, acquired on the temple's reliefs at 15000–25000 lux day time. The registration process of RGB data and depth information was manually performed via control points and was directly supervised by the archaeologist. Apart of enriching the data availability, this dataset can become an opportunity for International researchers to understand more about Indonesian Cultural Heritages. Elsevier 2021-02-06 /pmc/articles/PMC7900221/ /pubmed/33665250 http://dx.doi.org/10.1016/j.dib.2021.106853 Text en © 2021 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Data Article Frisky, Aufaclav Zatu Kusuma Harjoko, Agus Awaludin, Lukman Dharmawan, Andi Augoestien, Nia Gella Candradewi, Ika Hujja, Roghib Muhammad Putranto, Andi Hartono, Tri Suhartono, Yudi Zambanini, Sebastian Sablatnig, Robert Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts |
title | Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts |
title_full | Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts |
title_fullStr | Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts |
title_full_unstemmed | Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts |
title_short | Registered Relief Depth (RRD) borobudur dataset for single-frame depth prediction on one-side artifacts |
title_sort | registered relief depth (rrd) borobudur dataset for single-frame depth prediction on one-side artifacts |
topic | Data Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900221/ https://www.ncbi.nlm.nih.gov/pubmed/33665250 http://dx.doi.org/10.1016/j.dib.2021.106853 |
work_keys_str_mv | AT friskyaufaclavzatukusuma registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT harjokoagus registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT awaludinlukman registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT dharmawanandi registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT augoestienniagella registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT candradewiika registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT hujjaroghibmuhammad registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT putrantoandi registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT hartonotri registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT suhartonoyudi registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT zambaninisebastian registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts AT sablatnigrobert registeredreliefdepthrrdborobudurdatasetforsingleframedepthpredictionononesideartifacts |