Cargando…
Genetic Variation, Diet, Inflammation, and the Risk for COVID-19
COVID-19, which is caused by SARS-CoV-2, is characterized by various symptoms, ranging from mild fatigue to life-threatening pneumonia, “cytokine storm,” and multiorgan failure. The manifestation of COVID-19 may lead to a cytokine storm, i.e., it facilitates viral replication that triggers a strong...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
S. Karger AG
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900446/ https://www.ncbi.nlm.nih.gov/pubmed/33530084 http://dx.doi.org/10.1159/000513886 |
_version_ | 1783654213745639424 |
---|---|
author | Simopoulos, Artemis P. |
author_facet | Simopoulos, Artemis P. |
author_sort | Simopoulos, Artemis P. |
collection | PubMed |
description | COVID-19, which is caused by SARS-CoV-2, is characterized by various symptoms, ranging from mild fatigue to life-threatening pneumonia, “cytokine storm,” and multiorgan failure. The manifestation of COVID-19 may lead to a cytokine storm, i.e., it facilitates viral replication that triggers a strong release of cytokines, which then modulates the immune system and results in hyperinflammation. Today's diet is high in omega-6 fatty acids and deficient in omega-3 fatty acids; this, along with a high fructose intake, leads to obesity, which is a chronic state of low-grade inflammation. Omega-6 fatty acids are proinflammatory and prothrombotic whereas omega-3 fatty acids are less proinflammatory and thrombotic. Furthermore, omega-3 fatty acids make specialized lipid mediators, namely resolvins, protectins, and maresins, that are potent anti-inflammatory agents. Throughout evolution there was a balance between omega-6 and omega-3 fatty acids with a ratio of 1–2/1 omega-6/omega-3, but today this ratio is 16–20/1 omega-6/omega-3, leading to a proinflammatory state. In addition, genetic variants in FADS1, FADS2, ELOV-2, and ELOV-5 lead to a more efficient biosynthesis of long-chain polyunsaturated fatty acids (PUFAs), e.g., of linoleic acid (LA) to arachidonic acid (ARA), and (alpha-linolenic acid) (ALA) to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), leading to higher ARA levels. Because the US diet is already high in omega-6 fatty acids, the increased biosynthesis of ARA in people with the derived FADS haplotype (haplotype D) leads to an increased production of leukotrienes, thromboxanes, C-reactive protein (CRP), and eventually elevated levels of cytokines, like interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF), which may increase susceptibility to COVID-19. About 80% of African Americans, 50% of Hispanics, and 45% of European Americans have the FADS haplotype D and are thus efficient metabolizers, which could account for the higher vulnerability of these populations to COVID-19. Therefore, another reason that African Americans and Hispanics are more susceptible to COVID-19 is that they have a higher frequency of haplotype D, which is no longer beneficial in today's environment and diet. Genetic variation must be considered in all studies of disease development and therapy because it is important to the practice of precision nutrition by physicians and other health professionals. The objective of this commentary is to emphasize the importance of genetic variation within populations and its interaction with diet in the development of disease. Differences in the frequency of genes and their interactions with nutrients in various population groups must be considered among the factors contributing to health disparities in the development of COVID-19. A balanced omega-6/omega-3 ratio is essential to health. Physicians should measure their patients' fatty acids and recommend decreasing the intake of foods rich in omega-6 fatty acids and increasing the intake of omega-3 fatty acids along with fruits and vegetables. |
format | Online Article Text |
id | pubmed-7900446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | S. Karger AG |
record_format | MEDLINE/PubMed |
spelling | pubmed-79004462021-02-24 Genetic Variation, Diet, Inflammation, and the Risk for COVID-19 Simopoulos, Artemis P. Lifestyle Genom Editorial COVID-19, which is caused by SARS-CoV-2, is characterized by various symptoms, ranging from mild fatigue to life-threatening pneumonia, “cytokine storm,” and multiorgan failure. The manifestation of COVID-19 may lead to a cytokine storm, i.e., it facilitates viral replication that triggers a strong release of cytokines, which then modulates the immune system and results in hyperinflammation. Today's diet is high in omega-6 fatty acids and deficient in omega-3 fatty acids; this, along with a high fructose intake, leads to obesity, which is a chronic state of low-grade inflammation. Omega-6 fatty acids are proinflammatory and prothrombotic whereas omega-3 fatty acids are less proinflammatory and thrombotic. Furthermore, omega-3 fatty acids make specialized lipid mediators, namely resolvins, protectins, and maresins, that are potent anti-inflammatory agents. Throughout evolution there was a balance between omega-6 and omega-3 fatty acids with a ratio of 1–2/1 omega-6/omega-3, but today this ratio is 16–20/1 omega-6/omega-3, leading to a proinflammatory state. In addition, genetic variants in FADS1, FADS2, ELOV-2, and ELOV-5 lead to a more efficient biosynthesis of long-chain polyunsaturated fatty acids (PUFAs), e.g., of linoleic acid (LA) to arachidonic acid (ARA), and (alpha-linolenic acid) (ALA) to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), leading to higher ARA levels. Because the US diet is already high in omega-6 fatty acids, the increased biosynthesis of ARA in people with the derived FADS haplotype (haplotype D) leads to an increased production of leukotrienes, thromboxanes, C-reactive protein (CRP), and eventually elevated levels of cytokines, like interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF), which may increase susceptibility to COVID-19. About 80% of African Americans, 50% of Hispanics, and 45% of European Americans have the FADS haplotype D and are thus efficient metabolizers, which could account for the higher vulnerability of these populations to COVID-19. Therefore, another reason that African Americans and Hispanics are more susceptible to COVID-19 is that they have a higher frequency of haplotype D, which is no longer beneficial in today's environment and diet. Genetic variation must be considered in all studies of disease development and therapy because it is important to the practice of precision nutrition by physicians and other health professionals. The objective of this commentary is to emphasize the importance of genetic variation within populations and its interaction with diet in the development of disease. Differences in the frequency of genes and their interactions with nutrients in various population groups must be considered among the factors contributing to health disparities in the development of COVID-19. A balanced omega-6/omega-3 ratio is essential to health. Physicians should measure their patients' fatty acids and recommend decreasing the intake of foods rich in omega-6 fatty acids and increasing the intake of omega-3 fatty acids along with fruits and vegetables. S. Karger AG 2021-02-02 /pmc/articles/PMC7900446/ /pubmed/33530084 http://dx.doi.org/10.1159/000513886 Text en Copyright © 2021 by S. Karger AG, Basel https://creativecommons.org/licenses/by-nc-nd/4.0/ This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements. |
spellingShingle | Editorial Simopoulos, Artemis P. Genetic Variation, Diet, Inflammation, and the Risk for COVID-19 |
title | Genetic Variation, Diet, Inflammation, and the Risk for COVID-19 |
title_full | Genetic Variation, Diet, Inflammation, and the Risk for COVID-19 |
title_fullStr | Genetic Variation, Diet, Inflammation, and the Risk for COVID-19 |
title_full_unstemmed | Genetic Variation, Diet, Inflammation, and the Risk for COVID-19 |
title_short | Genetic Variation, Diet, Inflammation, and the Risk for COVID-19 |
title_sort | genetic variation, diet, inflammation, and the risk for covid-19 |
topic | Editorial |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900446/ https://www.ncbi.nlm.nih.gov/pubmed/33530084 http://dx.doi.org/10.1159/000513886 |
work_keys_str_mv | AT simopoulosartemisp geneticvariationdietinflammationandtheriskforcovid19 |