Cargando…

AGO-accessible anticancer siRNAs designed with synergistic miRNA-like activity

Small interfering RNAs (siRNAs) therapeutically induce RNA interference (RNAi) of disease-causing genes, but they also silence hundreds of seed-matched off-targets as behaving similar to microRNAs (miRNAs). miRNAs control the pathophysiology of tumors, wherein their accessible binding sites can be s...

Descripción completa

Detalles Bibliográficos
Autores principales: Gu, Dowoon, Ahn, Seung Hyun, Eom, Sangkyeong, Lee, Hye-Sook, Ham, Juyoung, Lee, Dong Ha, Cho, You Kyung, Koh, Yongjun, Ignatova, Elizaveta, Jang, Eun-Sook, Chi, Sung Wook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society of Gene & Cell Therapy 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900643/
https://www.ncbi.nlm.nih.gov/pubmed/33664996
http://dx.doi.org/10.1016/j.omtn.2021.01.018
Descripción
Sumario:Small interfering RNAs (siRNAs) therapeutically induce RNA interference (RNAi) of disease-causing genes, but they also silence hundreds of seed-matched off-targets as behaving similar to microRNAs (miRNAs). miRNAs control the pathophysiology of tumors, wherein their accessible binding sites can be sequenced by Argonaute crosslinking immunoprecipitation (AGO CLIP). Herein, based on AGO CLIP, we develop potent anticancer siRNAs utilizing miRNA-like activity (mi/siRNAs). The mi/siRNAs contain seed sequences (positions 2–7) of tumor-suppressive miRNAs while maintaining perfect sequence complementarity to the AGO-accessible tumor target sites. Initially, host miRNA interactions with human papillomavirus 18 (HPV18) were identified in cervical cancer by AGO CLIP, revealing tumor-suppressive activity of miR-1/206 and miR-218. Based on the AGO-miRNA binding sites, mi/siRNAs were designed to target E6 and E7 (E6/E7) transcript with seed sequences of miR-1/206 (206/E7) and miR-218 (218/E7). Synergistic anticancer activity of 206/E7 and 218/E7 was functionally validated and confirmed via RNA sequencing and in vivo xenograft models (206/E7). Other mi/siRNA sequences were additionally designed for cervical, ovarian, and breast cancer, and available as an online tool (http://ago.korea.ac.kr/misiRNA); some of the mi/siRNAs were validated for their augmented anticancer activity (206/EphA2 and 206/Her2). mi/siRNAs could coordinate miRNA-like activity with robust siRNA function, demonstrating the potential of AGO CLIP analysis for RNAi therapeutics.