Cargando…
Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures
Interactions with RNA-binding proteins (RBPs) are integral to RNA function and cellular regulation, and dynamically reflect specific cellular conditions. However, presently available tools for predicting RBP–RNA interactions employ RNA sequence and/or predicted RNA structures, and therefore do not c...
Autores principales: | Sun, Lei, Xu, Kui, Huang, Wenze, Yang, Yucheng T., Li, Pan, Tang, Lei, Xiong, Tuanlin, Zhang, Qiangfeng Cliff |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900654/ https://www.ncbi.nlm.nih.gov/pubmed/33623109 http://dx.doi.org/10.1038/s41422-021-00476-y |
Ejemplares similares
-
PrismNet: predicting protein–RNA interaction using in vivo RNA structural information
por: Xu, Yiran, et al.
Publicado: (2023) -
In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs
por: Sun, Lei, et al.
Publicado: (2021) -
RNA structure maps across mammalian cellular compartments
por: Sun, Lei, et al.
Publicado: (2019) -
RNA Regulations and Functions Decoded by Transcriptome-wide RNA Structure Probing
por: Piao, Meiling, et al.
Publicado: (2017) -
RASP: an atlas of transcriptome-wide RNA secondary structure probing data
por: Li, Pan, et al.
Publicado: (2020)