Cargando…
An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury
Promoting brain recovery after stroke is challenging as a plethora of inhibitory molecules are produced in the brain preventing it from full healing. Moreover, the full scope of inhibitory molecules produced is not well understood. Here, using a high-sensitivity UPLC-MS-based shotgun lipidomics stra...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900749/ https://www.ncbi.nlm.nih.gov/pubmed/33288676 http://dx.doi.org/10.1074/jbc.RA120.016565 |
_version_ | 1783654275009740800 |
---|---|
author | Zheng, Lifeng Xie, Chengbin Zheng, Ju Dong, Qiangrui Si, Tengxiao Zhang, Jing Hou, Sheng-Tao |
author_facet | Zheng, Lifeng Xie, Chengbin Zheng, Ju Dong, Qiangrui Si, Tengxiao Zhang, Jing Hou, Sheng-Tao |
author_sort | Zheng, Lifeng |
collection | PubMed |
description | Promoting brain recovery after stroke is challenging as a plethora of inhibitory molecules are produced in the brain preventing it from full healing. Moreover, the full scope of inhibitory molecules produced is not well understood. Here, using a high-sensitivity UPLC-MS-based shotgun lipidomics strategy, we semiquantitively measured the differential lipid contents in the mouse cerebral cortex recovering from a transient middle cerebral artery occlusion (MCAO). The lipidomic data were interrogated using the soft independent modeling of class analogy (SIMCA) method involving principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Statistics of the 578 confirmed lipids revealed 84 species were differentially changed during MCAO/reperfusion. The most dynamic changes in lipids occurred between 1 and 7 days post-MCAO, whereas concentrations had subsided to the Sham group level at 14 and 28 days post-MCAO. Quantitative analyses revealed a strong monotonic relationship between the reduction in phosphatidylcholine (PC)(16:0/16:0) and the increase in lysophosphatidylcholine (LPC)(16:0) levels (Spearman’s Rs = −0.86) during the 1 to 7 days reperfusion period. Inhibition of cPLA2 prevented changes in the ratio between PC(16:0/16:0) and LPC(16:0), indicating altered Land’s cycle of PC. A series of in vitro studies showed that LPC(16:0), but not PC(16:0/16:0), was detrimental to the integrity of neuronal growth cones and neuronal viability through evoking intracellular calcium influx. In contrast, PC(16:0/16:0) significantly suppressed microglial secretion of IL-1β and TNF-α, limiting neuroinflammation pathways. Together, these data support the role of the imbalanced ratio between PC(16:0/16:0) and LPC(16:0), maintained by Lands’ cycle, in neuronal damage and microglia-mediated inflammatory response during ischemic recovery. |
format | Online Article Text |
id | pubmed-7900749 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-79007492021-03-19 An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury Zheng, Lifeng Xie, Chengbin Zheng, Ju Dong, Qiangrui Si, Tengxiao Zhang, Jing Hou, Sheng-Tao J Biol Chem Research Article Promoting brain recovery after stroke is challenging as a plethora of inhibitory molecules are produced in the brain preventing it from full healing. Moreover, the full scope of inhibitory molecules produced is not well understood. Here, using a high-sensitivity UPLC-MS-based shotgun lipidomics strategy, we semiquantitively measured the differential lipid contents in the mouse cerebral cortex recovering from a transient middle cerebral artery occlusion (MCAO). The lipidomic data were interrogated using the soft independent modeling of class analogy (SIMCA) method involving principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Statistics of the 578 confirmed lipids revealed 84 species were differentially changed during MCAO/reperfusion. The most dynamic changes in lipids occurred between 1 and 7 days post-MCAO, whereas concentrations had subsided to the Sham group level at 14 and 28 days post-MCAO. Quantitative analyses revealed a strong monotonic relationship between the reduction in phosphatidylcholine (PC)(16:0/16:0) and the increase in lysophosphatidylcholine (LPC)(16:0) levels (Spearman’s Rs = −0.86) during the 1 to 7 days reperfusion period. Inhibition of cPLA2 prevented changes in the ratio between PC(16:0/16:0) and LPC(16:0), indicating altered Land’s cycle of PC. A series of in vitro studies showed that LPC(16:0), but not PC(16:0/16:0), was detrimental to the integrity of neuronal growth cones and neuronal viability through evoking intracellular calcium influx. In contrast, PC(16:0/16:0) significantly suppressed microglial secretion of IL-1β and TNF-α, limiting neuroinflammation pathways. Together, these data support the role of the imbalanced ratio between PC(16:0/16:0) and LPC(16:0), maintained by Lands’ cycle, in neuronal damage and microglia-mediated inflammatory response during ischemic recovery. American Society for Biochemistry and Molecular Biology 2020-12-10 /pmc/articles/PMC7900749/ /pubmed/33288676 http://dx.doi.org/10.1074/jbc.RA120.016565 Text en © 2020 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Zheng, Lifeng Xie, Chengbin Zheng, Ju Dong, Qiangrui Si, Tengxiao Zhang, Jing Hou, Sheng-Tao An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury |
title | An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury |
title_full | An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury |
title_fullStr | An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury |
title_full_unstemmed | An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury |
title_short | An imbalanced ratio between PC(16:0/16:0) and LPC(16:0) revealed by lipidomics supports the role of the Lands cycle in ischemic brain injury |
title_sort | imbalanced ratio between pc(16:0/16:0) and lpc(16:0) revealed by lipidomics supports the role of the lands cycle in ischemic brain injury |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900749/ https://www.ncbi.nlm.nih.gov/pubmed/33288676 http://dx.doi.org/10.1074/jbc.RA120.016565 |
work_keys_str_mv | AT zhenglifeng animbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT xiechengbin animbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT zhengju animbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT dongqiangrui animbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT sitengxiao animbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT zhangjing animbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT houshengtao animbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT zhenglifeng imbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT xiechengbin imbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT zhengju imbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT dongqiangrui imbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT sitengxiao imbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT zhangjing imbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury AT houshengtao imbalancedratiobetweenpc160160andlpc160revealedbylipidomicssupportstheroleofthelandscycleinischemicbraininjury |