Cargando…
Observational Constraints on Warm Cloud Microphysical Processes Using Machine Learning and Optimization Techniques
We introduce new parameterizations for autoconversion and accretion rates that greatly improve representation of the growth processes of warm rain. The new parameterizations capitalize on machine‐learning and optimization techniques and are constrained by in situ cloud probe measurements from the re...
Autores principales: | Chiu, J. Christine, Yang, C. Kevin, van Leeuwen, Peter Jan, Feingold, Graham, Wood, Robert, Blanchard, Yann, Mei, Fan, Wang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7900997/ https://www.ncbi.nlm.nih.gov/pubmed/33678926 http://dx.doi.org/10.1029/2020GL091236 |
Ejemplares similares
-
Microphysics of clouds and precipitation /
por: Pruppacher, Hans R., 1930-
Publicado: (1978) -
Microphysical processes in clouds
por: Young, Kenneth C., 1941-
Publicado: (1993) -
Microphysics of clouds and precipitation /
por: Pruppacher, Hans R., 1930-
Publicado: (1997) -
Atmospheric electricity and cloud microphysics
por: Harrison, R G
Publicado: (2001) -
Understanding the Microphysical Control and Spatial‐Temporal Variability of Warm Rain Probability Using CloudSat and MODIS Observations
por: Zhang, Zhibo, et al.
Publicado: (2022)